Rchr
J-GLOBAL ID:201501003343436993   Update date: Sep. 16, 2024

Shimamura Kohei

シマムラ コウヘイ | Shimamura Kohei
Affiliation and department:
Job title: Assistant Professor
Research field  (2): Bio-, chemical, and soft-matter physics ,  Mathematical physics and basic theory
Research keywords  (4): Origin of Life ,  Artificial neural network potential ,  First-principles molecular dynamics simulation ,  Molecular dynamics simulation
Research theme for competitive and other funds  (5):
  • 2022 - 2025 多元素不規則系物質に対する機械学習分子動力学法を用いた熱伝導度計算法の開発と応用
  • 2021 - 2025 機能性ナノ構造物質における非断熱・非平衡現象の第一原理的解明
  • 2019 - 2022 Application of Neural Network Driven Molecular Dynamics with First-Principles Accuracy to Origin of Life
  • 2016 - 2019 隕石衝突による生命の起源分子生成過程の第一原理的研究
  • 2015 - 2016 太陽光による非断熱・非平衡反応過程の第一原理的研究
Papers (72):
  • Kohei Shimamura, Shinnosuke Hattori, Ken ichi Nomura, Akihide Koura, Fuyuki Shimojo. Thermal conductivity calculation using homogeneous non-equilibrium molecular dynamics simulation with Allegro. International Journal of Heat and Mass Transfer. 2024. 234. 126106
  • Hinata Hokyo, Kai Ito, Rajiv K Kalia, Rehan Kapadia, Aiichiro Nakano, Kohei Shimamura, Fuyuki Shimojo, Priya Vashishta. Photoinduced Negative Differential Resistance at a Graphene/Silicon Interface: A Nonadiabatic Quantum Molecular Dynamics Study. The journal of physical chemistry letters. 2024. 9226-9232
  • Kai Ito, Hironori Shimakura, Shuta Tahara, Koji Ohara, Akihide Koura, Kohei Shimamura, Fuyuki Shimojo. Intermolecular Correlations in Liquid Lactic Acid Based on ab initio Molecular Dynamics Simulations Combined with High-Energy X-ray Diffraction Measurements. Journal of the Physical Society of Japan. 2024
  • Kohei Shimamura, Akihide Koura, Fuyuki Shimojo. Construction of machine-learning interatomic potential under heat flux regularization and its application to power spectrum analysis for silver chalcogenides. Computer Physics Communications. 2024. 294. 108920
  • Erik Bhekti Yutomo, Fatimah Arofiati Noor, Toto Winata, Kohei Shimamura, Akihide Koura, Fuyuki Shimojo. Ab Initio Molecular Dynamics of the Initial Growth of Few-Layer Graphene on a Cu-Ni(111) Catalyst. Journal of Physical Chemistry C. 2023. 127. 38. 19258-19268
more...
MISC (21):
  • 圓谷貴夫, 島村孝平, 高良明英, 下條冬樹, 河村能人. A Molecular Dynamics Study on the Shear Viscosity and Atomic Dynamics in Super-Cooled Liquid of a Mg-Zn-Y Alloy Using Ab-Initio MD and Machine Learning Interatomic Potentials. 日本物理学会講演概要集(CD-ROM). 2024. 79. 1
  • 圓谷貴夫, 島村孝平, 高良明英, 西本宗矢, 下條冬樹, 河村能人. Ab-initio molecular dynamics study of viscosity and icosahedral cluster formation in a supercooled liquid of LPSO-type Mg-Zn-Y alloys. 軽金属学会大会講演概要. 2023. 144th
  • 圓谷貴夫, 島村孝平, 高良明英, 西本宗矢, 下條冬樹, 河村能人. 第一原理MD計算とGreen-久保公式に基づくMg-Zn-Y合金の過冷却液体状態における粘性と原子ダイナミクスの解明. 日本金属学会講演大会(Web). 2023. 173rd
  • Aiichiro Nakano, Rajiv Kalia, Ken-ichi Nomura, Kohei Shimamura, Fuyuki Shimojo, Priya Vashishta. Large spatiotemporal-scale quantum molecular dynamics simulations: A divide-conquerrecombine approach. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY. 2015. 249
  • ARIFIN Rizal, SHIBUTA Yasushi, SHIMAMURA Kohei, SHIMOJO Fuyuki, YAMAGUCHI Shu. 9pPSA-128 Ab initio Study of Methane Reaction on Nickel (111) Surface. Meeting abstracts of the Physical Society of Japan. 2014. 69. 2. 667-667
more...
Lectures and oral presentations  (29):
  • 熱伝導度計算に有効なグラフニューラルネットワーク型機械学習原子間ポテンシャル構築方法の検討II
    (日本物理学会 2024年春季大会 2024)
  • 熱伝導度計算に有効なグラフニューラルネットワーク型機械学習原子間ポテンシャル構築方法の検討
    (日本物理学会第78回年次大会 2023)
  • Molecular Dynamics Simulation with Machine-Learning Interatomic Potential and Its Applications to Computing Free Energy and Thermal Conductivity
    (2023)
  • 機械学習原子間ポテンシャルの訓練方法の検討及び分子動力学法への応用
    (物性研究所スパコン共同利用・CCMS合同研究会「計算の時代における物性科学」 2023)
  • 熱流束の正則化を用いた機械学習ポテンシャルの訓練法と熱伝導度計算への効果
    (日本物理学会2023年春季大会 2023)
more...
Education (1):
  • - 2015 Kumamoto University Graduate School of Science and Technology
Professional career (2):
  • 修士(理学) (熊本大学)
  • 博士(理学) (熊本大学)
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page