Rchr
J-GLOBAL ID:201601001794851514   Update date: Jan. 10, 2020

KIMURA HIRONOBU

KIMURA HIRONOBU
Affiliation and department:
Research field  (1): Basic analysis
Research keywords  (4): hypergeometric function ,  Painleve system ,  Integrable system ,  Special function
Papers (19):
  • Hironobu Kimura. On wronskian determinant formulas of the general hypergeometric functions. Tokyo Journal of Mathematics. 2017. 34. 507-524
  • Hironobu Kimura. Relation of semi-classical orthogonal polynomials to general schlesinger systems via twistor theory. Trends in Mathematics. 2017. 399-414
  • Hironobu Kimura, Damiran Tseveennamjil. Confluence of general schlesinger systems and Twistor theory. Hiroshima Mathematical Journal. 2016. 46. 289-309
  • Hironobu Kimura, Damiran Tseveenamijil. General schlesinger systems and their symmetry from the view point of twistor theory. Journal of Nonlinear Mathematical Physics. 2013. 20. 130-152
  • KIMURA HIRONOBU. On a problem of arrangements related to the hypergeometric integrals of confluent type. Adv. Stud. Pure Math. 2012. 62. 137-155
more...
MISC (6):
  • Kimura Hironobu. General Schlesinger systems and their hypergeometric type solutions (Monodromy of the differential equations and related problems). RIMS Kokyuroku. 2009. 1662. 218-230
  • KIMURA Hironobu, TSEVEENAMIJIL Damiran. Degenerated Schlesinger Systems from the Viewpoint of Twistor Theory (Hyperfunctions and linear differential equations 2006. History of Mathematics and Algorithms). RIMS Kokyuroku. 2009. 1648. 57-67
  • 木村弘信. 現代物理のための数学キーワード モノドロミー 多価性を測るものさし. 数理科学. 2008. 46. 3. 31-36
  • Kimura Hironobu. On the de Rham cohomology associated with the general hypergeometric integrals(Recent Topics on Real and Complex Singularities). RIMS Kokyuroku. 2006. 1501. 195-208
  • Kimura Hironobu. The de Rham cohomology groups for the general hypergeometric integral of type ($q+1, 1^{N-q}$) (Global and asymptotic analysis of differential equations in the complex domain). RIMS Kokyuroku. 2004. 1367. 179-188
more...
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page