Rchr
J-GLOBAL ID:201601010644245950   Update date: Nov. 20, 2024

Miyazaki Takafumi

ミヤザキ タカフミ | Miyazaki Takafumi
Affiliation and department:
Job title: Associate Professor
Homepage URL  (2): https://www.sci.st.gunma-u.ac.jp/index.htmlhttps://www.sci.st.gunma-u.ac.jp/index_e.html
Research field  (1): Algebra
Research keywords  (4): Diophantine equation ,  exponential Diophantine equation ,  purely exponential Diophantine equation ,  System of Pellian equations
Research theme for competitive and other funds  (5):
  • 2024 - 2029 代数的無理数の実効的な有理近似と指数型ディオファントス方程式
  • 2020 - 2024 Algebraic and analytic study on exponential equations related to Fermat's equation
  • 2016 - 2020 Study of Diophantine problems related to polynomial-exponential Diophantine equations
  • 2013 - 2016 Study of multiplicative structures of families of linear recuurence sequences and exponential Diophantine equations
  • 2011 - 2013 Terai's conjecture and Jesmanowicz' conjecture on Diophantine equations
Papers (32):
  • Takafumi Miyazaki, István Pink. Number of solutions to a special type of unit equations in two unknowns, II. Research in Number Theory. 2024. 10. 2
  • Takafumi Miyazaki, István Pink. Number of solutions to a special type of unit equations in two unknowns. American Journal of Mathematics. 2024. 146. 2. 295-369
  • Takafumi Miyazaki, Masaki Sudo, Nobuhiro Terai. A purely exponential Diophantine equation in three unknowns. Periodica Mathematica Hungarica. 2021. 84. 2. 287-298
  • Takafumi Miyazaki. Coincidence between two binary recurrent sequences of polynomials arising from Diophantine triples. Tokyo Journal of Mathematics. 2019. 42. 2. 611-619
  • Takafumi Miyazaki. Application of cubic residue theory to an exponential equation concerning Eisenstein triples. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie. 2019. 62. 110. 305-312
more...
MISC (14):
  • Maohua Le, Takafumi Miyazaki. An application of $abc$-conjecture to a conjecture of Scott and Styer on purely exponential equations. 2024
  • Number of solutions to a special type of Pillai's equation. 2024. 2285. 200-208
  • Takafumi Miyazaki, István Pink. Number of solutions to a special type of unit equations in two unknowns, III. 2024
  • Takafumi Miyazaki. Number of solutions to some purely exponential Diophantine equation in three unknowns. 2022. 2222. 212-218
  • 宮崎 隆史. On Terai's exponential equation with two finite integer parameters. 数理解析研究所考究緑. 2018. 2092. 50-59
more...
Lectures and oral presentations  (52):
  • 特別な純指数型不定方程式の解の個数の最良評価とその応用
    (明学セミナー 2024)
  • Number of solutions to a special type of unit equations in two unknowns III
    (NUMBER THEORY SEMINAR 2024)
  • Number of solutions to a special type of unit equations in two unknowns III
    (Diophantine Analysis and Related Fields 2024 2024)
  • Number of solutions to a special type of Pillai’s equation
    (Analytic Number Theory and Related Topics 2023)
  • Number of solutions to a special type of Pillai’s equation
    (25th Central European Number Theory Conference 2023)
more...
Education (1):
  • 2009 - 2012 Tokyo Metropolitan University
Professional career (1):
  • Dr. Science (Tokyo Metropolitan University)
Work history (5):
  • 2018/10 - 現在 Gunma University Associate professor
  • 2015/09 - 2018/09 Gunma University Assistant professor
  • 2013/04 - 2015/08 JSPS Fellows (PD)
  • 2012/04 - 2013/03 JSPS Fellows (PD)
  • 2011/04 - 2012/03 JSPS Fellows (DC2)
Committee career (2):
  • 2023/01 - 現在 Notes on Number Theory and Discrete Mathematics Editorial Board Member
  • 2024/03 - 2025/03 日本数学会 地方区代議員
Association Membership(s) (1):
THE MATHEMATICAL SOCIETY OF JAPAN
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page