Rchr
J-GLOBAL ID:201601018424833177   Update date: Sep. 21, 2024

Suzuki Taiji

スズキ タイジ | Suzuki Taiji
Affiliation and department:
Research field  (1): Mathematical informatics
Research keywords  (5): statistical learning theory ,  high dimensional statistics ,  kernel method ,  stochastic optimization ,  Bayesian statistics
Research theme for competitive and other funds  (10):
  • 2020 - 2025 Innovative Developments of Theories and Methodologies for Large Complex Data
  • 2018 - 2022 Intensifying deep learning theory and its application to structure analysis of deep neural network
  • 2018 - 2021 Advance of artificial intelligence by theoretical investigation of deep learning
  • 2015 - 2020 Establishing Theoretical Foundations for Mathematical Modeling of Pathological Biosystems and its Applications to Personalized Medicine
  • 2015 - 2020 Theories and Methodologies for Large Complex Data
Show all
Papers (29):
  • Hiroaki Kingetsu, Kenichi Kobayashi, Taiji Suzuki. Neural Network Module Decomposition and Recomposition with Superimposed Masks. 2023 International Joint Conference on Neural Networks (IJCNN). 2023
  • Stefano Massaroli, Michael Poli, Sho Sonoda, Taiji Suzuki, Jinkyoo Park, Atsushi Yamashita, Hajime Asama. Differentiable Multiple Shooting Layers. Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021(NeurIPS). 2021. 16532-16544
  • Shaogao Lv, Zengyan Fan, Heng Lian, Taiji Suzuki, Kenji Fukumizu. A reproducing kernel Hilbert space approach to high dimensional partially varying coefficient model. Computational Statistics and Data Analysis. 2020. 152
  • Song Liu, Taiji Suzuki, Raissa Relator, Jun Sese, Masashi Sugiyama, Kenji Fukumizu. SUPPORT CONSISTENCY OF DIRECT SPARSE-CHANGE LEARNING IN MARKOV NETWORKS. ANNALS OF STATISTICS. 2017. 45. 3. 959-990
  • Song Liu 0002, Akiko Takeda, Taiji Suzuki, Kenji Fukumizu. Trimmed Density Ratio Estimation. Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA. 2017. 4518-4528
more...
MISC (15):
  • Hiroaki Kingetsu, Kenichi Kobayashi 0001, Taiji Suzuki. Neural Network Module Decomposition and Recomposition. CoRR. 2021. abs/2112.13208
  • Song Liu, Kenji Fukumizu, Taiji Suzuki. Learning sparse structural changes in high-dimensional Markov networks: A review on methodologies and theories. Behaviormetrika. 2017. 44. 1. 265-286
  • Song Liu, Taiji Suzuki, Masashi Sugiyama, Kenji Fukumizu. Structure learning of partitioned Markov networks. 33rd International Conference on Machine Learning, ICML 2016. 2016. 1. 657-671
  • 金川 平志郎, 鈴木 大慈. Non-parametric tensor learning with Gaussian process prior and its application to multi-task learning (情報論的学習理論と機械学習 情報論的学習理論ワークショップ(IBIS2015)). 電子情報通信学会技術研究報告 = IEICE technical report : 信学技報. 2015. 115. 323. 273-280
  • Not Too Late to Learn! Mathematics for Computer Science:3. Mathematics for Machine Learning. IPSJ Magazine. 2015. 56. 5. 442-447
more...
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page