Rchr
J-GLOBAL ID:201701015587528310
Update date: Mar. 08, 2024
Nakayama Chikara
ナカヤマ チカラ | Nakayama Chikara
Affiliation and department:
Job title:
Professor
Other affiliations (2):
Research field (1):
Algebra
Research keywords (2):
arithmetic geometry
, algebra
Research theme for competitive and other funds (19):
- 2022 - 2027 Periods of integral for log smooth families
- 2017 - 2023 Construction and evolution of log Hodge theory and applications of the fundamental diagram to geometry
- 2016 - 2021 Compactification of Mumford--Tate domains and log geometry
- 2011 - 2016 Theory of mixed log Hodge structures and its applications
- 2010 - 2015 アーベル多様体のモジュライ空間のコンパクト化とlog幾何
- 2006 - 2010 混合ホッジ構造のモジュライ空間のコンパクト化とlog幾何
- 2007 - 2010 Theory of log mixed Hodge structures and its applications to geometry
- 2004 - 2005 Arithmetic of Automorphic Forms and Discrete Groups
- 2002 - 2004 アーベル多様体の退化とlog幾何,点のない空間概念
- 2002 - 2003 Research on Eisenstein series
- 2000 - 2001 logエタール景と一般logリーマン・ヒルベルト対応,ホッジ構造の退化
- 2000 - 2001 The structure of polarized varieties
- 1999 - 2001 Algebraic Cycles on Algebraic Varieties
- 1998 - 1999 固有log smooth底変換logホッジ理論とアーベル多様体の退化
- 1998 - 1999 Research on nearly holomorphic modular forms
- 1997 - 1999 Classification and structure of polarized varieties
- 1996 - 1996 l進対数的エタール・コホモロジー論とその応用
- 1996 - 1996 調和写像に関係する幾何学
- 1995 - 1995 ゼータ関数と正規積の研究
Show all
Papers (48):
-
C. Nakayama. Base Change Theorems for Log Analytic Spaces. Tokyo J. Math. 2023. 46. 1. 111-124
-
K. Kato, C. Nakayama, S. Usui. Deligne Beilinson cohomology and log Hodge theory. Proc. Japan;Acad. Ser;A Math. Sc. 2023. 99. 4. 27-32
-
Takeshi Kajiwara, Kazuya Kato, Chikara Nakayama. Logarithmic abelian varieties, Part VII: Moduli. Yokohama Mathematical Journal. 2021. 67. 9-48
-
Chikara Nakayama. On log motives (jointly worked). Tunisian Journal of Mathematics. 2020. 2. 4. 733-789
-
Taro Fujisawa, Chikara Nakayama. Geometric polarized log Hodge structures with a base of log rank one (jointly worked). Kodai Mathematical Journal. 2020. 43. 1. 57-83
more...
MISC (1):
-
Luc Illusie, Kazuya Kato, Chikara Nakayama. Quasi-unipotent logarithmic Riemann-Hilbert correspondences (vol 12, pg 1, 2005). JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO. 2007. 14. 1. 113-116
Lectures and oral presentations (19):
-
Moduli of logarithmic abelian varieties with PEL structure
(2022)
-
Log Hodge theory
(代数セミナー 2021)
-
Geometric polarized log Hodge structures over the base of log rank one
(ワークショップ「ホッジ理論と代数幾何学」 2018)
-
Log motives and the Hodge realization
(Workshop: Log geometry, degenerations and related topics. 2018)
-
Log mixed Hodge 理論における無限遠点の捉え方 (1) - Log higher Albanese manifolds -
(ワークショップ「ホッジ理論と代数幾何学」 2017)
more...
Education (3):
- 1992 - 1995 The University of Tokyo Graduate School, Division of Mathematical Sciences
- 1990 - 1992 The University of Tokyo Graduate School, Division of Science
- - 1990 The University of Tokyo Faculty of Science
Professional career (1):
- Ph. D. in Mathematics (The University of Tokyo)
Work history (8):
- 2013/04/01 - 現在 Hitotsubashi University Faculty of Economics Professor
- 2013/04/01 - 現在 Hitotsubashi University Graduate School of Economics Professor
- 2013/06/01 - 2015/03/31 Tokyo Institute of Technology Graduate School of Science and Engineering
- 2013/05/01 - 2013/05/31 Tokyo Institute of Technology Graduate School of Science and Engineering
- 2011/02/01 - 2013/03/31 Tokyo Institute of Technology Graduate School of Science and Engineering Associate Professor
- 2007/04/01 - 2011/01/31 Tokyo Institute of Technology Graduate School of Science and Engineering Research Associate
- 1998/04/01 - 2007/03/31 Tokyo Institute of Technology Graduate School of Science and Engineering Assistant
- 1995/04/01 - 1998/03/31 Tokyo Institute of Technology School of Science, Department of Mathematics Assistant
Show all
Awards (1):
- 2012/10 - 東京工業大学 東京工業大学 理学系若手研究奨励賞
Association Membership(s) (1):
The Mathematical Society of Japan
Return to Previous Page