Rchr
J-GLOBAL ID:201801003998209436   Update date: Nov. 05, 2024

Kemmochi Tomoya

ケンモチ トモヤ | Kemmochi Tomoya
Affiliation and department:
Job title: Assistant professor
Homepage URL  (2): https://t-kemmochi.github.io/ja/https://t-kemmochi.github.io/en/
Research field  (2): Applied mathematics and statistics ,  Basic mathematics
Research keywords  (6): Numerical analysis ,  Finite element method ,  Partial differential equations ,  Parabolic PDEs ,  Stokes equations ,  Elastic curves
Research theme for competitive and other funds  (3):
  • 2021 - 2026 Analysis on singularities of higher order geometric gradient flows
  • 2019 - 2023 Finite element methods for nonlinear partial differential equations on curved domains
  • 2015 - 2018 離散最大正則性とその有限要素法・有限体積法への応用
Papers (21):
  • Takahito Kashiwabara, Tomoya Kemmochi. Discrete Maximal Regularity for the Discontinuous Galerkin Time-Stepping Method without Logarithmic Factor. SIAM Journal on Numerical Analysis. 2024
  • Tomoya Kemmochi, Tatsuya Miura. Migrating elastic flows. Journal de Mathématiques Pures et Appliquées. 2024. 185. 47-62
  • Ren-Jie Zhao, Tomohiro Sogabe, Tomoya Kemmochi, Shao-Liang Zhang. Shifted LOPBiCG: A locally orthogonal product-type method for solving nonsymmetric shifted linear systems based on Bi-CGSTAB. Numerical Linear Algebra with Applications. 2024
  • Yuki Satake, Tomohiro Sogabe, Tomoya Kemmochi, Shao-Liang Zhang. Matrix equation representation of the convolution equation and its unique solvability. Special Matrices. 2024. 12. 1
  • Jing Niu, Tomohiro Sogabe, Lei Du, Tomoya Kemmochi, Shao-Liang Zhang. Tensor product-type methods for solving Sylvester tensor equations. Applied Mathematics and Computation. 2023
more...
MISC (5):
  • 剱持智哉. Scalar auxiliary variable approachの紹介とその拡張. RIMS講究録. 2020. 2167. 86-95
  • 立岡文理, 曽我部知広, 剱持智哉, 張紹良. 行列対数関数のための二重指数関数型公式の収束率について. RIMS講究録. 2020. 2167. 1-9
  • Energy dissipative numerical schemes for gradient flows of planar curves. RIMS Kôkyûroku. 2020. 2146
  • Allen-Cahn方程式の数値解に対する漸近的な誤差解析. RIMS講究録. 2018. 2094
  • 剱持智哉. 付着の影響のある基板上の薄膜の形状決定問題に関する数値解析. RIMS講究録. 2016. 1995
Lectures and oral presentations  (68):
  • Structure-preserving numerical methods for constrained gradient flows of planar closed curves with explicit tangential velocities
    (ICIAM2023 2023)
  • Stokes作用素の有限要素近似に対する離散最大正則性
    (日本応用数理学会 第19回 研究部会連合発表会 2023)
  • Stokes作用素の有限要素近似に対する離散最大正則性
    (2022年度応用数学合同研究集会 2022)
  • $L^p$-resolvent estimate for finite element approximation of the Stokes operator.
    (Online seminar of the Institute of Fundamental and Frontier Sciences 2022)
  • Higher-order discrete gradient methods by discontinuous Galerkin time-stepping methods
    (JSPS seminar: Topics in computational methods for stochastic and deterministic differential equations 2022)
more...
Education (3):
  • 2015 - 2018 The University of Tokyo Graduate School of Mathematical Sciences Ph.D. course
  • 2013 - 2015 The University of Tokyo Graduate School of Mathematical Sciences Master course
  • 2009 - 2013 The University of Tokyo School of Science Department of Mathematics
Professional career (1):
  • Ph.D. in Mathematical Sciences (The University of Tokyo)
Work history (3):
  • 2018/04 - 現在 Nagoya University Department of Applied Physics, Graduate School of Engineering Assistant Professor
  • 2015/04 - 2018/03 JSPS Research Fellowship for Young Scientists, DC1
  • 2014/09 - 2018/03 Fellowship of Leading Graduate Course for Frontiers of Mathematical Sciences and Physics, the University of Tokyo
Committee career (6):
  • 2024/04 - 現在 日本応用数理学会 若手の会 幹事運営委員
  • 2022/04 - 現在 日本応用数理学会 代表会員
  • 2021/04 - 現在 日本応用数理学会 論文誌 JSIAM Letters 編集委員
  • 2019/05 - 現在 日本応用数理学会 科学技術計算と数値解析 研究部会 運営協力者 (MLの管理)
  • 2019/07 - 2024/03 日本応用数理学会 若手の会 運営委員
Show all
Awards (5):
  • 2022/06 - The Japan Society for Industrial and Applied Mathematics Young Lecture Award Higher order discrete gradient methods by discontinuous Galerkin time-stepping methods
  • 2018/03 - Graduate School of Mathematical Sciences, The University of Tokyo Dean's Prize
  • 2017/06 - East Asia Section of Society for Industrial and Applied Mathematics Student Paper Prize (2nd Prize) Energy dissipative numerical schemes for gradient flows of planar curves.
  • 2017/03 - The Mathematical Society of Japan The MSJ Prize for Excellent Young Applied Mathematicians $L^\infty$-error estimates for the finite element approximation of parabolic problems on domains with smooth boundaries
  • 2015/03 - Graduate School of Mathematical Sciences, The University of Tokyo Dean's Prize
Association Membership(s) (2):
THE JAPAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS ,  THE MATHEMATICAL SOCIETY OF JAPAN
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page