Rchr
J-GLOBAL ID:201801004612031499   Update date: Oct. 30, 2024

Sonoda Sho

ソノダ ショウ | Sonoda Sho
Affiliation and department:
Job title: Senior Scientist
Homepage URL  (1): https://sites.google.com/view/shosonoda/
Research field  (1): Intelligent informatics
Research keywords  (12): machine learning ,  deep learning ,  integral representation theory ,  ridgelet transform ,  neural network ,  representation theory ,  harmonic analysis ,  kernel quadrature ,  Wasserstein geometry ,  particle filtering ,  quantum machine learning ,  automated theorem prover
Research theme for competitive and other funds  (4):
  • 2024 - 2028 Deepening the analysis of deep learning through functional space theory
  • 2021 - 2025 複雑データに内在する深層構造の理論と応用
  • 2018 - 2022 Transportation analysis of deep neural networks
  • 2015 - 2017 積分表現理論によるディープニューラルネットの解析と設計指標の開発
Papers (26):
  • 園田翔. 深層ニューラルネットの構成的普遍近似定理-群表現論的方法-. 日本神経回路学会誌. 2024. 31. 4. 177-186
  • Sho Sonoda, Isao Ishikawa, Masahiro Ikeda. A unified Fourier slice method to derive ridgelet transform for a variety of depth-2 neural networks. Journal of Statistical Planning and Inference. 2024. 233. 106184
  • Toshinori Kitamura, Tadashi Kozuno, Masahiro Kato, Yuki Ichihara, Soichiro Nishimori, Akiyoshi Sannai, Sho Sonoda, Wataru Kumagai, Yutaka Matsuo. A Policy Gradient Primal-Dual Algorithm for Constrained MDPs with Uniform PAC Guarantees. First Reinforcement Learning Safety Workshop. 2024
  • 園田翔. 深層学習と調和解析/写像の幅と深さを計算する. 数学セミナー2024年6月号. 2024. 63. 6. 74-79
  • Y. Hashimoto, S. Sonoda, I. Ishikawa, A. Nitanda, T. Suzuki. Koopman-Based Bound for Generalization: New Aspect of Neural Networks Regarding Nonlinear Noise Filtering. The Twelfth International Conference on Learning Representations. 2024
more...
MISC (14):
  • S. Sonoda, Y. Hashimoto, I. Ishikawa, M. Ikeda. Unified Universality Theorem for Deep and Shallow Joint-Group-Equivariant Machines. ArXiv preprint: 2405.13682v2. 2024
  • Hayata Yamasaki, Sho Sonoda. Exponential Error Convergence in Data Classification with Optimized Random Features: Acceleration by Quantum Machine Learning. 2022
  • S. Sonoda, I. Ishikawa, M. Ikeda. Ghosts in Neural Networks: Existence, Structure and Role of Infinite-Dimensional Null Space. 2021
  • Sho Sonoda. Fast Approximation and Estimation Bounds of Kernel Quadrature for Infinitely Wide Models. 2020
  • Sho Sonoda, Isao Ishikawa, Masahiro Ikeda, Kei Hagihara, Yoshihiro Sawano, Takuo Matsubara, Noboru Murata. The global optimum of shallow neural network is attained by ridgelet transform. 2018
more...
Books (1):
  • Data Science and Machine Learning: Mathematical and Statistical Methods
    2022 ISBN:9784807920297
Lectures and oral presentations  (72):
  • Deep Ridgelet Transform: Harmonic Analysis for Deep Neural Network
    (The 14th AIMS Conference Session on Understanding the Learning of Deep Networks: Expressivity, Optimization, and Generalization 2024)
  • Deep Ridgelet Transform: Harmonic Analysis for Deep Learning Machine
    (Statistical Models and Mathematical Optimization Based on Geometric Structures 2024)
  • Deep Ridgelet Transform: Harmonic Analysis for Deep Neural Network
    (One World Seminar Series on the Mathematics of Machine Learning 2024)
  • Deep Ridgelet Transform: Harmonic Analysis for Deep Neural Network
    (Applied Geometry for Data Sciences 2024)
  • Deep Ridgelet Transform: Harmonic Analysis for Deep Neural Network
    (Workshop on Mathematical Foundations of Machine Learning at CIRM 2024)
more...
Professional career (1):
  • 博士(工学) (早稲田大学)
Awards (5):
  • 2023/10 - 第26回情報論的学習理論ワークショップ (IBIS2023) 優秀プレゼンテーション賞ファイナリスト ニューラルネットのパラメータに作用する双対群と普遍性定理の表現論的証明
  • 2022/06 - 日本応用数理学会 第18回若手優秀講演賞(2021年度) 積分表現ニューラルネットが定める積分方程式の一般解
  • 2017/04 - 早稲田大学 第2回WIRPワークショップ最優秀賞 深層ニューラルネットの輸送解釈とWasserstein幾何学的解析
  • 2016/11 - 第19回情報論的学習理論ワークショップ (IBIS2016) 学生最優秀プレゼンテーション賞 無限層デノイジング・オートエンコーダーの輸送理論解釈
  • 2012/03 - 日本鉄鋼協会 計測・制御・システム研究賞 物理・統計的モデリングによる取鍋内溶鋼温度の高度予測技術
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page