Rchr
J-GLOBAL ID:201801005069396631   Update date: Jul. 07, 2023

Hikami Kazuhiro

ヒカミ カズヒロ | Hikami Kazuhiro
Affiliation and department:
Homepage URL  (1): https://sites.google.com/view/khikami
Research field  (3): Mathematical physics and basic theory ,  Algebra ,  Geometry
Research theme for competitive and other funds  (22):
  • 2022 - 2027 量子モジュラー形式の深化と展開
  • 2020 - 2025 幾何的漸化式に基づく量子トポロジーと弦の場の量子構造の数理の究明
  • 2020 - 2024 Asymptotic behaviors of quantum invariants of knots and three-manifolds
  • 2016 - 2021 Studies on Mock Modular Forms and Quantum Invariants
  • 2017 - 2020 行列模型に基づくファットグラフの分子生物学への応用
Show all
Papers (81):
  • Anna Beliakova, Kazuhiro Hikami. Non-semisimple invariants and Habiro’s series. Topology and Geometry. 2021. 161-174
  • Kazuhiro Hikami. DAHA and skein algebra of surfaces: double-torus knots. Letters in Mathematical Physics. 2019
  • Kazuhiro Hikami. Note on Character Varieties and Cluster Algebras. SIGMA. 2019. 15. 003
  • Kazuhiro Hikami, Jeremy Lovejoy. Hecke-type formulas for families of unified Witt en-Reshetikhin-Turaev invariants. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS. 2017. 11. 2. 249-272
  • Kazuhiro Hikami, Jeremy Lovejoy. Torus knots and quantum modular forms. Research in the Mathematical Sciences. 2015. 2. 2
more...
MISC (1):
Lectures and oral presentations  (19):
  • 3-manifodls and quantum modular forms
    (AMS spring western virtual sectional meeting: special session "q-series, number theory, and quantum topology" 2022)
  • Quantum invariants, q-series, DAHA
    (Number Theory, Strings, and Quantum Physics 2021)
  • モックモジュラー形式と量子モジュラー形式
    (東北大学理学部数学科談話会 2021)
  • Braid Group and Cluster Algebra
    (GeMAT Seminar (Geometric Methods in Algebra and Topology) 2020)
  • DAHA and skein algebra on surface
    (Zoom Cluster Seminar 2020)
more...
Professional career (1):
  • 博士(理学) (東京大学)
Association Membership(s) (2):
American Mathematical Society ,  日本物理学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page