Rchr
J-GLOBAL ID:201801006174978189   Update date: Jul. 16, 2024

Matsubara Takamitsu

Matsubara Takamitsu
Affiliation and department:
Research field  (1): Intelligent robotics
Research keywords  (3): Reinforcement Learning ,  Machine Learning ,  Intelligent robots
Research theme for competitive and other funds  (11):
  • 2021 - 2024 Development of Motion Generation Technology to Realize Robots that Perform Various Tasks according to Natural Language Instructions
  • 2021 - 2024 安全性と信頼性を備えたロボット強化学習の技術基盤の創出
  • 2019 - 2023 マルチモーダルタッチケアロボットの開発と心理学的検証
  • 2016 - 2019 Model-based Reinforcement Learning of Assistive Strategies for Physically-assistive Robots
  • 2015 - 2018 State estimation by irregular rate sampling and real-time system identification of filter-bank-interpolation type
Show all
Papers (136):
  • Takanori Jin, Taisuke Kobayashi, Takamitsu Matsubara. Constrained footstep planning using model-based reinforcement learning in virtual constraint-based walking. Advanced Robotics. 2024. 38. 8. 525-545
  • Naoto Komeno, Takamitsu Matsubara. Incipient Slip Detection by Vibration Injection Into Soft Sensor. IEEE Robotics and Automation Letters. 2024
  • Kenta HANADA, Kakeru FUJIKURA, Takashi AZUMA, Takamitsu MATSUBARA, Kenji SUGIMOTO. 拡張モデル予測制御とスライディングイノベーションフィルタによる水中ドローンのロバスト制御. Transactions of the Society of Instrument and Control Engineers. 2024. 60. 3. 268-279
  • Hanbit Oh, Takamitsu Matsubara. Leveraging Demonstrator-Perceived Precision for Safe Interactive Imitation Learning of Clearance-Limited Tasks. IEEE Robotics and Automation Letters. 2024
  • Wataru Hatanaka, Ryota Yamashina, Takamitsu Matsubara. Reinforcement Learning of Action and Query Policies With LTL Instructions Under Uncertain Event Detector. IEEE Robotics and Automation Letters. 2023
more...
MISC (136):
  • 岡田颯太, 小林泰介, 小林泰介, 松原崇充. Pneumatic Artificial Muscle Control Robust to Hysteresis and Individual Differences by Recurrent Distributed Reinforcement Learning. 自律分散システム・シンポジウム(CD-ROM). 2023. 35th
  • 神孝典, 神孝典, 小林泰介, 小林泰介, 松原崇充. Footstep Planning Using Learning-Based MPC in Limit-Cycle-Based Walking. 日本機械学会ロボティクス・メカトロニクス講演会講演論文集(CD-ROM). 2023. 2023
  • 高橋慶一郎, 小林泰介, 小林泰介, 松原崇充. フェヒナーの法則に従う強化学習則の挙動解析. 日本ロボット学会学術講演会予稿集(CD-ROM). 2022. 40th
  • 神孝典, 小林泰介, 小林泰介, 松原崇充. リミットサイクル型歩行における長期予測精度の検証. 日本ロボット学会学術講演会予稿集(CD-ROM). 2022. 40th
  • 米澤壮太郎, 小林泰介, 小林泰介, 松原崇充. Reinforcement Learning with Consideration of Experience Reachability by Current Policy. 計測自動制御学会システムインテグレーション部門講演会(CD-ROM). 2022. 23rd
more...
Education (3):
  • 2005 - 2007 Nara Institute of Science and Technology
  • 2003 - 2005 Nara Institute of Science and Technology
  • 2001 - 2003 Osaka Prefecture University
Professional career (1):
  • 博士(工学) (奈良先端科学技術大学院大学)
Work history (12):
  • 2022/04 - 現在 Nara Institute of Science and Technology Professor
  • 2016/10 - 現在 The National Institute of Advanced Industrial Science and Technology (AIST)
  • 2008/04 - 現在 ATR Visiting Reseacher
  • 2019/01 - 2022/03 文部科学省 H30年度 卓越研究員
  • 2019/01 - 2022/03 Nara Institute of Science and Technology Associate Professor
Show all
Awards (13):
  • 2023/05 - Nikkan Kogyo Shimbun Japan Industrial Technology Award, Prime Minister's Award Autonomous Plant Control AI FKDPP
  • 2019/01 - JAFOE 2018 Best Speakers Award
  • 2018/10 - 日本神経回路学会 論文賞
  • 2017/10 - Robotics and Autonomous Systems Outstanding Reviewer
  • 2017 - IEEE ICIA GaiTech Best Paper in Robotics
Show all
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page