Rchr
J-GLOBAL ID:201801015572845171   Update date: Sep. 11, 2024

Hirayama Hiroyuki

ヒラヤマ ヒロユキ | Hirayama Hiroyuki
Affiliation and department:
Job title: Associate Professor
Research field  (1): Mathematical analysis
Research theme for competitive and other funds  (4):
  • 2021 - 2025 パラメーターを含む非線形分散型方程式の連立系に対する時間大域的可解性について
  • 2021 - 2024 Lie 群構造をもつ非線形発展方程式の可解性の解明
  • 2017 - 2021 複雑な共鳴構造を持つ非線形分散型方程式の可解性について
  • 2014 - 2016 臨界指数のソボレフ空間における非線型分散型方程式の適切性の解明
Papers (19):
  • Hiroyuki Hirayama, Yasuyuki Oka. Results of existence and uniqueness for the Cauchy problem of semilinear heat equations on stratified Lie groups. Journal of Differential Equations. 2024. 412. 214-249
  • Ikki Fukuda, Hiroyuki Hirayama. Optimal decay estimate and asymptotic profile for solutions to the generalized Zakharov-Kuznetsov-Burgers equation in 2D. Nonlinear Analysis: Real World Applications. 2024. 79. 104130-104130
  • Hiroyuki Hirayama, Masahiro Ikeda. Variational problems for the system of nonlinear Schrödinger equations with derivative nonlinearities. Calculus of Variations and Partial Differential Equations. 2024. 63. 7
  • Hiroyuki Hirayama, Shinya Kinoshita, Mamoru Okamoto. Sharp well-posedness for the Cauchy problem of the two dimensional quadratic nonlinear Schrödinger equation with angular regularity. Journal of Differential Equations. 2024. 395. 181-222
  • Hiroyuki Hirayama, Yasuyuki Oka. Existence and Uniqueness for the Cauchy Problem of Semilinear Heat Equations on Stratified Lie Groups in the Critical Sobolev Space. Taiwanese Journal of Mathematics. 2024. 1-21
more...
MISC (3):
  • 平山 浩之. 微分型非線形シュレディンガー方程式系のほとんど最良なソボレフ空間における適切性について. 第60回 実函数論・函数解析学合同シンポジウム 講演集. 2021. 34-53
  • 平山 浩之. Well-posedness for a system of quadratic derivative nonlinear Schr ̈odinger equations with periodic initial data at the scaling critical regularity. 第5 回白浜研究集会報告集. 2014. 99-108
  • 平山 浩之. トーラス上の高階次分散型方程式の時間局所適切性について. 第31 回発展方程式若手セミナー 報告集. 2009. 223-236
Books (1):
  • 工科系のための偏微分方程式入門
    学術図書出版社 2023 ISBN:9784780610925
Lectures and oral presentations  (69):
  • Variational problems for the system of nonlinear Schrodinger equations with quadratic derivative nonlinearities
    (Takamatsu workshop in differential equations and related topics 2024)
  • 一般化Zakharov-Kuznetsov-Burgers方程式の初期値問題の解の長時間挙動と最良な減衰評価について
    (日本数学会2023年度秋季総合分科会)
  • Existence and stability of the ground states to the system of nonlinear Schrodinger equations with derivative nonlinearity
    (応用解析研究会 2023)
  • Large time behavior and optimal decay estimate for solutions to the generalized KP-Burgers equation
    (NLPDEセミナー 2023)
  • Existence and stability of the ground states to the system of nonlinear Schrodinger equations with derivative nonlinearity
    (九州関数方程式セミナー 2023)
more...
Education (1):
  • - 2014 Nagoya University
Professional career (1):
  • 博士(数理学) (名古屋大学)
Work history (4):
  • 2020/11 - 現在 University of Miyazaki Faculty of Education Mathematics education Associate Professor
  • 2020/01/01 - 2020/10/31 University of Miyazaki Organization for Promotion of Career Management Tenure Track System Organization Lecturer
  • 2015/11/01 - 2019/12/31 University of Miyazaki Tenure Track System Organization Lecturer
  • 2014/04 - 2015/10 名古屋大学大学院 多元数理科学研究科 日本学術振興会特別研究員PD
Awards (1):
  • 2018/07 - ELSEVIER Nonlinear Analysis Outstanding Contribution in Reviewing
Association Membership(s) (1):
日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page