Rchr
J-GLOBAL ID:201901003727732106   Update date: Sep. 01, 2021

Fukaya Noriyoshi

フカヤ ノリヨシ | Fukaya Noriyoshi
Affiliation and department:
Job title: Assistant Professor
Research field  (1): Mathematical analysis
Research keywords  (1): Nonlinear Partial Differential Equations
Research theme for competitive and other funds  (2):
  • 2020 - 2024 Classification of stability and instability of solitary waves for nonlinear Schroedinger equations
  • 2018 - 2020 Stability of two parameter family of solitary waves for nonlinear dispersive equations
Papers (4):
  • Noriyoshi Fukaya, Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with attractive inverse power potential. OSAKA J MATH. 2019. 56. 4. 713-726
  • Noriyoshi Fukaya, Masahito Ohta. Strong instability of standing waves with negative energy for double power nonlinear Schrödinger equations. SUT Journal of Mathematics. 2018. 54. 2. 131-143
  • Noriyoshi Fukaya. Instability of solitary waves for a generalized derivative nonlinear Schrödinger equation in a borderline case. Kodai Mathematical Journal. 2017. 40. 3. 450-467
  • Noriyoshi Fukaya, Masayuki Hayashi, Takahisa Inui. A SUFFICIENT CONDITION FOR GLOBAL EXISTENCE OF SOLUTIONS TO A GENERALIZED DERIVATIVE NONLINEAR SCHRODINGER EQUATION. ANALYSIS & PDE. 2017. 10. 5. 1149-1167
MISC (1):
  • 深谷 法良. Instability of solitary waves for a generalized derivative nonlinear Schr\"odinger equation in a borderline case. 第38回発展方程式若手セミナー報告集. 2016. 209-214
Lectures and oral presentations  (23):
  • Instability of algebraic standing waves for nonlinear Schrödinger equations with double power nonlinearities
    (日本数学会2020年度年会函数方程式論分科会 2020)
  • Instability of algebraic standing waves for nonlinear Schrödinger equations with double power nonlinearities
    (Workshop on recent progress in nonlinear dispersive PDEs 2019)
  • Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential
    (日本数学会2019年度秋季総合分科会函数方程式論分科会 2019)
  • Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential
    (12th International ISAAC Congress 2019)
  • Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential
    (RIMS共同研究(公開型) 調和解析と非線形偏微分方程式 2019)
more...
Education (2):
  • - 2019 Tokyo University of Science Department of Mathematics
  • - 2014 Tokyo University of Science Department of Mathematics
Professional career (1):
  • 博士(理学) (東京理科大学)
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page