Rchr
J-GLOBAL ID:201901019118008543   Update date: Sep. 15, 2021

Watanabe Hideya

ワタナベ ヒデヤ | Watanabe Hideya
Affiliation and department:
Research field  (1): Algebra
Research keywords  (6): quantum group ,  Lie algebra ,  Hecke algebra ,  crystal basis ,  quantum symmetric pair ,  representation theory
Research theme for competitive and other funds  (3):
  • 2021 - 2024 量子対称部分代数の表現論に現れる組合せ構造とその応用
  • 2020 - 2024 量子対称対のウェイト表現と結晶基底
  • 2017 - 2019 An approach to the Kazhdan-Lusztig polynomials via the representation theory of quantum symmetric pairs
Papers (8):
  • Hideya Watanabe, Keita Yamamura. Alcove paths and Gelfand-Tsetlin patterns. Annals of Combinatorics. 2021
  • Hideya Watanabe. Classical weight modules over $\imath$quantum groups. to appear in Journal of Algebra. 2019
  • Hideya Watanabe. Global crystal bases for integrable modules over a quantum symmetric pair of type AIII. Represent. Theory 25 (2021), 27-66. 2018
  • Huanchen Bao, Weiqiang Wang, Hideya Watanabe. Canonical bases for tensor products and super Kazhdan-Lusztig theory. J. Pure Appl. Algebra 224 (2020), no. 8, 106347, 9 pp. 2018
  • Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo, Weiqiang Wang, Hideya Watanabe. Quantum Schur duality of affine type C with three parameters. Math. Res. Lett. 27 (2020), no. 1, 79-114. 2018
more...
MISC (2):
  • Hideya Watanabe. A new tableau model for irreducible polynomial representations of the orthogonal group. 2021
  • Hideya Watanabe. Based modules over the $\imath$quantum group of type AI. arXiv:2103.12932. 2021
Lectures and oral presentations  (27):
  • Based modules over the i-quantum groups of type AI
    (2021)
  • Based modules over the i-quantum groups of type AI
    (Tokyo-Nagoya algebra seminar 2021)
  • Recent progress on representation theory of iquantum groups
    (2020)
  • Classical weight modules over iquantum groups at q = \infty
    (Recent advances in combinatorial representation theory 2020)
  • i量子群の結晶基底と中心化代数
    (第65回 代数学シンポジウム 2020)
more...
Education (4):
  • 2016 - 2019 Tokyo Institute of Technology
  • 2014 - 2016 Tokyo Institute of Technology Mathematics
  • 2012 - 2014 The University of Tokyo Department of Mathematics
  • 2010 - 2012 The University of Tokyo
Professional career (1):
  • 理学 (東京工業大学)
Work history (4):
  • 2021/04 - 現在 Osaka City University
  • 2020/04 - 2021/03 Kyoto University
  • 2019/10 - 2021/03 Kyoto University Research Institute for Mathematical Sciences
  • 2019/04 - 2019/09 Osaka University Graduate School of Information Science and Technology
Association Membership(s) (1):
THE MATHEMATICAL SOCIETY OF JAPAN
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page