Research theme for competitive and other funds (6):
2024 - 2028 Analysis and creation of numerical analysis algorithms using product-type neural network deep learning
2024 - 2027 Exploring the best dynamical systems for optimization and deep learning
2022 - 2027 微分代数方程式に対する高速な構造保存数値解法の構築
2020 - 2024 Creation of a foundation for a numerical approach to deep learning
2019 - 2022 微分代数方程式に対する構造保存数値解法の理論構築と発展方程式への応用
2016 - 2019 諸数学分野の理論に基づく構造保存型数値解法の拡張
Show all
Papers (25):
Shuto Kawai, Shun Sato, Takayasu Matsuo. Mathematical analysis and numerical comparison of energy-conservative schemes for the Zakharov equations. Japan Journal of Industrial and Applied Mathematics. 2024
Shuto Kawai, Shun Sato, Takayasu Matsuo. Mathematical analysis of a norm-conservative numerical scheme for the Ostrovsky equation. Japan Journal of Industrial and Applied Mathematics. 2024
Naoki Ishii, Shun Sato, Takayasu Matsuo. Affine-invariant projection methods for conservative integration of differential equations. JSIAM Letters. 2024. 16. 49-52
Tomoya Kamijima, Shun Sato, Kansei Ushiyama, Takayasu Matsuo, Ken’ichiro Tanaka. Analysis of continuous dynamical system models with Hessians derived from optimization methods. JSIAM Letters. 2024. 16. 29-32
Kansei Ushiyama, Shun Sato, Takayasu Matsuo. Properties and practicability of convergence-guaranteed optimization methods derived from weak discrete gradients. Numerical Algorithms. 2024. 96. 3. 1331-1362
Linearly implicit conservative exponential integrators for scalar auxiliary variable approach
(Workshop on Numerical Methods and Analysis for PDEs 2024)
Convergence rates of optimization methods in continuous and discrete time
(International Conference on Scientific Computing and Machine Learning 2024 2024)