Rchr
J-GLOBAL ID:201901021128672047   Update date: Sep. 15, 2021

Makoto Enokizono

Makoto Enokizono
Affiliation and department:
Research field  (1): Algebra
Research keywords  (1): 代数幾何学
Research theme for competitive and other funds  (3):
  • 2020 - 2024 二重被覆の手法を用いた一般型3次元多様体の地誌学的研究
  • 2019 - 2021 完全交叉特異点のDurfee型不等式に関する研究
  • 2016 - 2019 ファイバー曲面におけるスロープ不等式の研究
Papers (4):
  • Makoto Enokizono. Slope equality of plane curve fibrations and its application to Durfee's conjecture. 2021
  • Makoto Enokizono. Durfee-type inequality for complete intersection surface singularities. Duke Mathematical Journal. 2021. 170. 1-21
  • Enokizono Makoto. Fibers of cyclic covering fibrations of a ruled surface. Tohoku Mathematical journal (2). 2019. 71. 327-358
  • Makoto Enokizono. Slopes of Fibered Surfaces with a Finite Cyclic Automorphism. Michigan Mathematical Journal. 2017. 66. 1. 125-154
MISC (7):
  • Makoto Enokizono. Vanishing theorems and adjoint linear systems on normal surfaces in positive characteristic. preprint arXiv:2104.00197. 2021
  • Enokizono Makoto. An integral version of Zariski decompositions on normal surfaces. preprint arXiv:2007.06519. 2020
  • Makoto Enokizono, Tatsuya Horiguchi, Takahiro Nagaoka, Akiyoshi Tsuchiya. An additive basis for the cohomology rings of regular nilpotent Hessenberg varieties. preprint arXiv:1912.11763. 2019
  • Enokizono Makoto, Tatsuya Horiguchi, Takahiro Nagaoka, Akiyoshi Tsuchiya. Uniform bases for ideal arrangements. preprint arXiv:1912.02448. 2019
  • Enokizono Makoto. Slope equality of Eisenbud-Harris special fibrations of genus 4. preprint arXiv:1804.06370. 2018
more...
Lectures and oral presentations  (44):
  • Adjoint linear systems on normal surfaces
    (2021)
  • Vanishing theorems and adjoint linear systems on normal surfaces in positive characteristic
    (2021)
  • Vanishing theorem on normal surfaces in positive characteristic
    (2021)
  • Extension theorem of morphisms from divisors on normal surfaces
    (Degenerations and models of algebraic varieties and related topics 2021)
  • Integral Zariski decomposition on normal surfaces and its applications
    (Kinosaki algebraic geometry symposium 2020 2020)
more...
Education (3):
  • 2016 - 2017 大阪大学大学院 数学専攻(博士課程)
  • 2014 - 2016 大阪大学大学院 数学専攻(修士課程)
  • 2010 - 2014 Osaka University Department of Mathematics
Professional career (1):
  • 博士(理学) (大阪大学)
Work history (3):
  • 2019/04 - 現在 Tokyo University of Science Faculty of Science and Technology
  • 2017/04 - 2019/03 日本学術振興会 特別研究員 PD(大阪大学)
  • 2016/04 - 2017/03 日本学術振興会 特別研究員 DC1(大阪大学)
Awards (1):
  • 2014/03 - 大阪大学 楠本賞
Association Membership(s) (1):
THE MATHEMATICAL SOCIETY OF JAPAN
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page