Rchr
J-GLOBAL ID:202101020121582915
Update date: Jul. 31, 2024
Sato Takuya
サトウ タクヤ | Sato Takuya
Affiliation and department:
Research theme for competitive and other funds (2):
- 2022 - 2027 非線形消散型偏微分方程式に対する解の解析性と大域挙動の解明
- 2023 - 2026 臨界構造を持つ消散-分散型偏微分方程式の解の解析性と大域挙動の解明
Papers (13):
-
Takayoshi Ogawa, Takuya Sato, Shun Tsuhara. The initial-boundary value problem for the Schrödinger equation with the nonlinear Neumann boundary condition on the half-plane. Nonlinear Differential Equations and Applications NoDEA. 2024. 31. 4
-
Jadamba Gerelmaa, Naoyasu Kita, Takuya Sato. L2-Decay of Solutions to Dissipative Nonlinear Schrödinger Equation with Large Initial Data. Journal of Mathematical Sciences. 2024
-
Takuya Sato. L^2-Decay Rate for Special Solutions to Critical Dissipative Nonlinear Schrödinger Equations. Annales Henri Poincaré. 2023. 25. 2. 1693-1709
-
Nakao Hayashi, Chunhua Li, Takayoshi Ogawa, Takuya Sato. Critical exponent for global existence of solutions to the Schrödinger equation with a nonlinear boundary condition. Nonlinear Analysis. 2023. 230. 113229-113229
-
Naoyasu Kita, Takuya Sato. Optimal L2-decay of solutions to the dissipative nonlinear Schrödinger equation in higher space dimensions. Journal of Differential Equations. 2023. 354. 49-66
more...
Lectures and oral presentations (44):
-
消散型非線形シュレディンガー方程式の特別な解の長時間挙動
(大阪大学微分方程式セミナー 2024)
-
非線形消散型シュレディンガー方程式の特別な解の長時間挙動
(九州関数方程式セミナー 2024)
-
Long time behavior of special solutions to dissipative nonlinear Schrodinger equations in the analytic class
(Workshop on dispersive PDE 2024)
-
L^2-decay rate for solutions to critical dissipative nonlinear Schr\"odinger equations
(Japan-Mongolia Joint Workshop 2024 2024)
-
OptimalL^2-decay rate of solutions to dissipative nonlinear Schr\"odinger equations in the analytic class
(日本数学会2024年度年会 2024)
more...
Education (3):
- 2018 - 2021 Tohoku University
- 2016 - 2018 Tohoku University Graduate School of Science Department of Mathematics
- 2012 - 2016 Hirosaki University Faculty of Science and Technology Department of Mathematical Science
Professional career (1):
- 博士(理学) (Tohoku University)
Work history (4):
- 2023/04 - 現在 大阪公立大学 数学研究所 特別研究員 (兼任数学研究所員)
- 2023/04 - 現在 熊本大学大学院 先端科学研究部 特別研究員 (PD)
- 2022/04 - 2023/03 東北大学大学院 理学研究科 特任研究員
- 2021/04 - 2022/03 東北大学大学院 理学研究科 学術研究員
Awards (1):
- 2021/03 - 川井数理科学財団 2020年度博士論文川井賞
Association Membership(s) (1):
Return to Previous Page