Rchr
J-GLOBAL ID:202301006500054588   Update date: Oct. 03, 2024

Nakakita Shogo

Nakakita Shogo
Research field  (2): Statistical science ,  Applied mathematics and statistics
Research keywords  (3): statistics of stochastic processes ,  Bayesian computation ,  high-dimensional statistics
Research theme for competitive and other funds  (3):
  • 2024 - 2027 Theoretical development of non-sparse high-dimensional statistics for understanding and utilization of large-degree-of-freedom models
  • 2021 - 2023 Estimation of Stochastic Processes with Online Optimisation Methods
  • 2020 - 2022 観測ノイズ付き確率微分方程式の局所漸近正規性・漸近有効推定量
Papers (7):
  • Shogo Nakakita. Parametric estimation of stochastic differential equations via online gradient descent. Japanese Journal of Statistics and Data Science. 2024
  • Shogo Nakakita, Pierre Alquier, Masaaki Imaizumi. Dimension-free bounds for sums of dependent matrices and operators with heavy-tailed distributions. Electronic Journal of Statistics. 2024. 18. 1
  • Shogo Nakakita. Quasi-likelihood analysis and Bayes-type estimators of an ergodic diffusion plus noise. Annals of the Institute of Statistical Mathematics. 2021
  • Shogo Nakakita, Masayuki Uchida. Inference for Convolutionally Observed Diffusion Processes. Entropy. 2020
  • Shogo Nakakita. Hybrid estimation for ergodic diffusion processes based on noisy discrete observations. Statistical Inference for Stochastic Processes. 2020
more...
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page