Rchr
J-GLOBAL ID:202401016870238745   Update date: Nov. 15, 2024

YAIRI TAKEHISA

ヤイリ タケヒサ | YAIRI TAKEHISA
Affiliation and department:
Job title: Professor
Other affiliations (1):
Papers (88):
  • Masanao Natsumeda, Takehisa Yairi. Consistent Pretext and Auxiliary Tasks With Relative Remaining Useful Life Estimation. IEEE Trans. Ind. Informatics. 2024. 20. 4. 6879-6888
  • Christopher Aaron O'Hara, Takehisa Yairi. Graph-based meta-learning for context-aware sensor management in nonlinear safety-critical environments. Adv. Robotics. 2024. 38. 6. 368-385
  • Masanao Natsumeda, Takehisa Yairi. Feature Selection With Partial Autoencoding for Zero-Sample Fault Diagnosis. IEEE Trans. Ind. Informatics. 2024. 20. 2. 2144-2153
  • Samir Khan, Takehisa Yairi, Seiji Tsutsumi, Shinichi Nakasuka. A review of physics-based learning for system health management. Annu. Rev. Control. 2024. 57. 100932-100932
  • Wenyi Liu, Takehisa Yairi. A Unifying View of Multivariate State Space Models for Soft Sensors in Industrial Processes. IEEE Access. 2024. 12. 5920-5932
more...
MISC (15):
  • 矢入 健久. 典型例で眺める機械学習の様々なタスク-Various Tasks of Machine Learning with Typical Examples-特集 エネルギー産業への機械学習の応用. 日本ガスタービン学会誌. 2019. 47. 5. 282-287
  • 矢入 健久. 航空機の故障予知および健全性監視に関わる人工知能技術の最新動向調査に関する報告-特集 第6回SJAC講演会を開催 : SJAC革新航空機技術開発センター平成30年度調査事業成果報告. 航空と宇宙 : 日本航空宇宙工業会会報 / 日本航空宇宙工業会 編. 2019. 784. 11-13
  • 矢入 健久. Visualization Methods for Spacecraft Telemetry Data Using Change-point Detection and Clustering. Aerospace Technology Japan. 2018. 印刷中
  • 衛星の状態監視システムのつくりかた : 過去のデータに基づく異常検知: How to Make Space Systems:5. How to Develop a Data-driven Health Monitoring System for Artificial Satellite. 2015. 56. 8. 777-780
  • YAIRI Takehisa. Editor's Introduction to "AI Technology Advancing into Space". Journal of the Japanese Society for Artificial Intelligence. 2014. 29. 4. 326-326
more...
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page