Rchr
J-GLOBAL ID:200901030287361933   Update date: Oct. 10, 2024

Nojima Yusuke

ノジマ ユウスケ | Nojima Yusuke
Affiliation and department:
Job title: Professor
Homepage URL  (2): https://yusuke-nojima.github.io/index_j.htmlhttps://yusuke-nojima.github.io
Research field  (2): Soft computing ,  Sensitivity (kansei) informatics
Research keywords  (14): ファジィシステム ,  進化計算 ,  対話型計算手法 ,  進化型多目的最適化 ,  ファジィ理論 ,  知識獲得 ,  多目的最適化 ,  遺伝的機械学習 ,  遺伝的アルゴリズム ,  並列分散実装 ,  計算知能工学 ,  Genetic Fuzzy Systems ,  Evolutionary Multiobjective Optimization ,  Computational Intelligence
Research theme for competitive and other funds  (6):
  • 2022 - 2026 Development of Evolutionary Multiobjective Optimization Algorithms and Benchmark Problem Design based on the Analysis of Real-world Problems
  • 2019 - 2022 Rule-based Explainable Knowledge Acquisition by Multiobjective Evolutionary Machine Learning
  • 2016 - 2019 Data Mining from Large High-dimensional Data by Multiobjective Genetics-based Machine Learning
  • 2013 - 2016 Parallel Distributed Implementation of Multiobjective Genetics-based Machine Learning Algorithms
  • 2010 - 2012 Effective Population and Training Data Partitioning in Parallel Distributed Evolutionary Knowledge Acquisition
Show all
Papers (317):
  • Takeru Konishi, Naoki Masuyama, Jorge Casillas, Yusuke Nojima. Fairness-aware Classifier Design via Multi-objective Fuzzy Genetics-based Machine Learning. 2024 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 2024. 1-8
  • NISHIKAWA Tsuyoshi, MASUYAMA Naoki, NOJIMA Yusuke. Improvement of a Classifier Using Adaptive Resonance Theory-Based Clustering for Multi-Label Mixed Data. Journal of Japan Society for Fuzzy Theory and Intelligent Informatics. 2024. 36. 1. 543-549
  • KONISHI Takeru, MASUYAMA Naoki, NOJIMA Yusuke. Verification of the Effectiveness of Using an Archive Population on Two-Stage Fuzzy Genetics-Based Machine Learning. Journal of Japan Society for Fuzzy Theory and Intelligent Informatics. 2024. 36. 1. 565-570
  • Eric Michael Vernon, Naoki Masuyama, Yusuke Nojima. Integrating White and Black Box Techniques for Interpretable Machine Learning. CoRR. 2024. abs/2407.08973
  • Kazuki Tashiro, Naoki Masuyama, Yusuke Nojima. A Growing Hierarchical Clustering Algorithm via Parameter-free Adaptive Resonance Theory. IJCNN. 2024. 1-6
more...
MISC (70):
  • 鳥越 大貴, 田代 一貴, 増山 直輝, 能島 裕介, 伊藤 諒, 三宅 寿英, 馬野 元秀. 適応共鳴理論に基づく階層的トポロジカルクラスタリングにおけるクラスタリング性能向上方法の検討-A Study on Improvement of Clustering Performance for Hierarchical Topological Clustering based on Adaptive Resonance Theory. ファジィシステムシンポジウム講演論文集. 2023. 39. 496-501
  • 上田 裕也, 増山 直輝, 能島 裕介. ε-局所差分プライバシを考慮した適応共鳴理論に基づく連合クラスタリング手法の検討-A Study on Adaptive Resonance Theory-based Clustering Incorporating Federated Clustering with Local ε-Differential Privacy. ファジィシステムシンポジウム講演論文集. 2023. 39. 478-483
  • 木下 貴登, 増山 直輝, 能島 裕介. 制約付き問題のための適応的問題分割ベース進化型多目的最適化アルゴリズムの検討-A Study of Adaptive Decomposition-based Multiobjective Evolutionary Algorithms for Solving Constrained Problems. ファジィシステムシンポジウム講演論文集. 2023. 39. 279-284
  • 西川 毅, 増山 直輝, 能島 裕介. 適応共鳴理論に基づくクラスタリングによるマルチラベル識別器の量質混在データへの対応-Multi-label Classification for Handling Mixed Data via Adaptive Resonance Theory-based Clustering. ファジィシステムシンポジウム講演論文集. 2023. 39. 484-489
  • 小西 豪, 増山 直輝, 能島 裕介. アーカイブ個体群を用いた2段階ファジィ遺伝的機械学習の検討-A Study on Two-Stage Multi-objective Fuzzy Genetics-based Machine Learning Using an Archive Population. ファジィシステムシンポジウム講演論文集. 2023. 39. 666-671
more...
Professional career (1):
  • 博士(工学) (神戸大学)
Work history (4):
  • 2022/04 - 現在 Osaka Metropolitan University Department of Core Informatics, Graduate School of Informantics Professor
  • 2020/10 - 2022/03 Osaka Prefecture University Graduate School of Engineering Division of Electrical Engineering and Information Science Professor
  • 2013/04 - 2020/09 Osaka Prefecture University Graduate School of Engineering Division of Electrical Engineering and Information Science Associate Professor
  • 2010 - 2013 Osaka Prefecture University
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page