Rchr
J-GLOBAL ID:200901034002812991   Update date: Nov. 23, 2024

Nishimura Takashi

ニシムラ タカシ | Nishimura Takashi
Affiliation and department:
Job title: Adjunct Professor
Research field  (3): Geometry ,  Applied mathematics and statistics ,  Basic mathematics
Research keywords  (3): Envelope ,  Singularity theory of smooth mappings ,  Catastroph theory
Research theme for competitive and other funds  (19):
  • 2023 - 2027 包絡超曲面の研究
  • 2022 - 2023 Singular Differential Geometry Properties of submanifolds
  • 2022 - 2023 Study on singularities of submanifolds in various spaces
  • 2022 - 2022 Deepening and Evolution of Applied Singularity Theory
  • 2017 - 2020 特異点論の新展開
Show all
Papers (60):
  • Takashi Nishimura. Envelopes of straight line families in the plane. To appear in Hokkaido Mathematical Journal. 2025
  • Huhe Han, Takashi Nishimura. Corrigendum: The spherical dual transform is an isometry for spherical Wulff shapes. Studia Mathematica. 2024. 277. 2. 191-193
  • Takashi Nishimura. On envelopes created by circle families in the plane. MI Lecture Note. 2024. 95. 323-331
  • Yongqiao Wang, Takashi Nishimura. Envelopes created by circle families in the plane. Journal of Geometry. 2024. 115. 7
  • Takashi Nishimura. Hyperplane families creating envelopes. Nonlinearity. 2022. 35. 2588
more...
MISC (6):
  • 西村尚史. 包絡線や包絡面の創造的条件に関連する問題について. 数理解析研究所講究録. 2024. 2281. 120-135
  • 西村尚史. 平面内の直線族が創造する包絡線について. 数理解析研究所講究録. 2022. 2226. 37-68
  • Ichiki Shunsuke, Nishimura Takashi. AROUND DISTANCE-SQUARED MAPPINGS (Singularity theory of differential maps and its applications). RIMS Kokyuroku. 2015. 1948. 28-37
  • 西村 尚史. ホイットニーの傘とスワローテイル. 第59回トポロジーシンポジウム講演集. 2012. 49-60
  • 西村 尚史. 有限確定多重芽上持ち上げ可能なベクトル場がなす加群の生成元について. 数理解析研究所講究録. 2011. 1764. 126-138
more...
Books (3):
  • School on Real and Complex Singularities in São Carlos, 2012
    日本数学会 2016 ISBN:9784864970303
  • The 12th International Workshop on Real and Complex Singularities, 22-27th July, 2012, Celebrating the 60th birthday of Prof. Shyuichi Izumiya, ICMC-USP, São Carlos, Brazil
    Journal of Singularities 2014
  • 特異点と分岐、特異点の数理2
    共立出版 2002
Lectures and oral presentations  (61):
  • A characterization of the Legendre involution on the class of generic frontals
    (Singularity seminar, University of Valencia (Valencia, Spain) 2024)
  • A siimple question arising from creative line families in the plane
    (Polish-Japanese Singularity Theory Working Days, Warsaw University of Technology (Poland) 2024)
  • On envelopes created by families of straight lines in R^2 (online talk)
    (2024 Workshop on Geometry, Topology of Singular Submanifolds and Related Topics, Northeast Normal University (Changchun, China) 2024)
  • Straight line families in the plane and their envelopes
    (18th International Workshop on Real and Complex Singularities, University of Valencia (Spain) 2024)
  • On envelopes created by straight line families in the plane
    (Singularity days at ICMC, University of Sao Paulo at Sao Carlos (Brazil) 2024)
more...
Education (2):
  • - 1987 Waseda University Graduate School, Division of Science and Engineering Mathematics
  • - 1981 Waseda University Faculty of Science and Engineering
Professional career (2):
  • Master of Science (Waseda University)
  • Doctor of Science (Waseda University)
Work history (11):
  • 2023/05 - 現在 Yokohama National University, Faculty of Environment and Information Sciences Adjunct Professor
  • 2023/04 - 現在 Yokohama National University Professor Emeritus
  • 2018/04 - 2023/03 Yokohama National University Graduate School of Environment and Information Sciences Department of Information Environment Professor
  • 2011/04 - 2023/03 Yokohama National University Faculty of Environment and Information Sciences Division of Social Environment and Information Professor
  • 2011/04 - 2023/03 Yokohama National University College of Engineering Science Department of Mathematics, Physics, Electrical Engineering and Computer Science Professor
Show all
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page