Rchr
J-GLOBAL ID:200901039844031957   Update date: Sep. 19, 2024

Tsugawa Kotaro

ツガワ コウタロウ | Tsugawa Kotaro
Affiliation and department:
Job title: Professor
Research field  (1): Basic analysis
Research keywords  (1): partial differential equations
Research theme for competitive and other funds  (7):
  • 2017 - 2023 非線形分散型方程式の代数的構造と初期値問題の適切性
  • 2013 - 2018 An investigation of symmetries in the geometric structure and existence of global solutions to nonlinear dispersive wave equations
  • 2013 - 2017 Cauchy problem of nonlinear dispersive equations
  • 2010 - 2014 geometric structure of nonlinearity and singularity of solutions for wave equations
  • 2008 - 2012 Analysis of properties of solutions to dispersive equations via canonical transforms and comparison principle
Show all
Papers (17):
  • Takamori Kato, Kotaro Tsugawa. Cancellation properties and unconditional well-posedness for the fifth order KdV type equations with periodic boundary condition. Partial Differential Equations and Applications. 2024. 5. 3
  • Tomoyuki TANAKA, Kotaro TSUGAWA. Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients. Osaka J. Math. 2022. 59. 465-480
  • Isao Kato, Kotaro Tsugawa. SCATTERING AND WELL-POSEDNESS FOR THE ZAKHAROV SYSTEM AT A CRITICAL SPACE IN FOUR AND MORE SPATIAL DIMENSIONS. DIFFERENTIAL AND INTEGRAL EQUATIONS. 2017. 30. 9-10. 763-794
  • K. Tsugawa. Local well-posedness and parabolic smoothing effect of fifth order dispersive equations on the torus. RIMS Kokyuroku Bessatsu. 2016. B60. 177-193
  • Kotaro Tsugawa. LOCAL WELL-POSEDNESS OF THE KDV EQUATION WITH QUASI-PERIODIC INITIAL DATA. SIAM JOURNAL ON MATHEMATICAL ANALYSIS. 2012. 44. 5. 3412-3428
more...
Lectures and oral presentations  (95):
  • Local well-posedness of derivative Schrodinger equations on the torus
    (French-Japanese one meeting in Tours 2023)
  • Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients
    (Mathematical Analysis of Nonlinear Dispersive and Wave Equations 2022)
  • Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients
    (神楽坂解析セミナー 2020)
  • Well-posedness and parabolic smoothing effect for higher order linear Schrodinger type equations on the torus
    (The 37th Kyushu Symposium on Partial Differential Equations 2020)
  • Ill-posedness of derivative nonlinear Schrodinger equations on the torus
    (東北大学応用数学セミナー 2018)
more...
Education (4):
  • 2001 - 2003 Tohoku University Graduate School, Division of Natural Science 研究生
  • 1998 - 2001 The University of Tokyo Graduate School, Division of Mathematical Sciences 数理科学専攻
  • 1996 - 1998 The University of Tokyo Graduate School, Division of Mathematical Sciences 数理科学専攻
  • 1991 - 1996 The University of Tokyo 理科I類(理学部数学科)
Professional career (2):
  • 修士(数理科学) (東京大学)
  • 博士(数理科学) (東京大学)
Work history (10):
  • 2018/04 - 中央大学理工学部教授
  • 2007/04 - 2018/03 名古屋大学大学院多元数理科学研究科・准教授
  • 2015/04 - 2016/03 京都大学大学院理学研究科非常勤講師
  • 2015/08 - 2015/08 清華大学(中国)集中講義講師
  • 2011/05 - 2012/03 トロント大学客員研究員(日本学術振興会特定国派遣研究者)
Show all
Association Membership(s) (1):
日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page