Rchr
J-GLOBAL ID:200901040799929902   Update date: Aug. 27, 2020

Shimizu Senjo

シミズ センジョウ | Shimizu Senjo
Affiliation and department:
Research field  (1): Basic analysis
Research keywords  (2): 偏微分方程式 ,  partial differential equations
Research theme for competitive and other funds  (6):
  • 2019 - 2023 Modern Mathematical Analysis for the Fluid Dynamics
  • 2016 - 2021 Well-posedness and stability of incompressible and compressible flows with phase transition
  • 2002 - 2005 弾性体に対する界面問題
  • 2002 - 2005 流体力学における自由境界値問題
  • 2002 - 2005 Interface problems of elastodynamics
Show all
Papers (65):
  • Matthias Hieber, Hideo Kozono, Anton Seyfert, Senjo Shimizu, Taku Yanagisawa. The Helmholtz-Weyl decomposition of $$L^r$$ vector fields for two dimensional exterior domains. The Journal of Geometric Analysis. 2020
  • Takayoshi Ogawa, Senjo Shimizu. Maximal $L^{1}$-regularity for parabolic boundary value problems with inhomogeneous data in the half-space. Proceedings of the Japan Academy, Series A, Mathematical Sciences. 2020. 96. 7. 57-62
  • H. Kozono, A. Okada, S. Shimizu. Characterization of initial data in the homgeneous Besov space for solutions in the Serrin class of the Navier-Stokes equations. J. Funct. Anal. 2020. 278
  • Paolo Maremonti, Senjo Shimizu. Global existence of weak solutions to 3D Navier-Stokes IBVP with non-decaying initial data in exterior domains. J. Differential Equations. 2020
  • M. Hieber, H. Kozono, A. Seyfert, S. Shimizu, T. Yanagisawa. A Characterization of Harmonic Lr-Vector Fields in Two-Dimensional Exterior Domains. The Journal of Geometric Analysis. 2019
more...
Books (2):
  • 流体方程式の自由境界問題の数学解析/人環フォーラム35
    京都大学大学院人間・環境学研究科 2016
  • 日本の現代数学-新しい展開をめざして-
    数学書房, 小川・斉藤・中島編 2010
Lectures and oral presentations  (23):
  • Maximal L^1-regularity for the parabolic boundary value problem with inhomogeneous data in the half-space
    (Evolution Equations: Abstract and Applied Perspective 2019)
  • On stability of a Navier-Stokes-Ohm problem from plasma physics
    (2019)
  • Global existence of solutions to 2-D Navier-Stokes flow with non-decaying initial data in half-plane
    (2019)
  • Characterization of initial data in the homogeneous Best space for solutions in the Serrin class of the Navier-Stokes equations
    (RIMS Workshop``The generalizations of functions spaces and its environment" 2018)
  • Characterization of initial data in the homogeneous Best space for solutions in the Serrin class of the Navier-Stokes equations
    (International Conference on PDEs from Fluids (Wuhan University, China) 2018)
more...
Education (1):
  • - 1994 University of Tsukuba
Professional career (2):
  • (BLANK) (University of Tsukuba)
  • (BLANK) (University of Tsukuba)
Work history (8):
  • 2008 - 2011 Shizuoka University Faculty of Science
  • 2011 - - 静岡大学創造科学技術大学院教授
  • 1996 - 2008 Shizuoka University Faculty of Engineering
  • 1996 - 2008 Associate Professor, Faculty of Engineering, Shizuoka University
  • 2008 - - Full professor, Faculty of Science, Shizuoka University
Show all
Association Membership(s) (2):
アメリカ数学会 ,  日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page