Rchr
J-GLOBAL ID:200901048323987611   Update date: Apr. 22, 2024

Ogawa Takayoshi

オガワ タカヨシ | Ogawa Takayoshi
Affiliation and department:
Job title: Professor
Homepage URL  (2): http://web.tohoku.ac.jp/ogawa/index.htmlhttp://web.tohoku.ac.jp/ogawa/en/index.html
Research field  (4): Applied mathematics and statistics ,  Basic mathematics ,  Basic analysis ,  Mathematical analysis
Research keywords  (3): Applied Analysis ,  Harmonic Analaysis ,  Real Analysis
Research theme for competitive and other funds  (48):
  • 2019 - 2024 Creation of advanced method in mathematical analysis on nonlinear mathematical models of critical type
  • 2020 - 2023 Invention and explorer for undiscovered structure and principle in the mathematical analysis for the relation between fluid dynamics and combustion.
  • 2018 - 2022 Entropy dissipative structure and mathematical analysis for complex fluids
  • 2019 - 2020 Unravel higher order critical structures to solutions of nonlinear dispersive and dissipative partial differential equations
  • 2015 - 2020 Fusion and evolution of asymptotic analysis and geometric analysis in partial differential equations
Show all
Papers (115):
  • Takayoshi Ogawa, Senjo Shimizu. Free boundary problems of the incompressible Navier-Stokes equations with non-flat initial surface in the critical Besov space. Mathematische Annalen. 2024
  • Priyanjana M. N. Dharmawardane, Shuichi Kawashima, Takayoshi Ogawa, Jun-ichi Segata. Linear decay property for the hyperbolic-parabolic coupled systems of thermoviscoelasticity. Journal of Hyperbolic Differential Equations. 2023. 20. 04. 967-986
  • Takayoshi OGAWA, Senjo SHIMIZU. Maximal $L^{1}$-regularity and free boundary problems for the incompressible Navier-Stokes equations in critical spaces. Journal of the Mathematical Society of Japan. 2023. -1. -1
  • Tatsuya Hosono, Takayoshi Ogawa. Global existence of solutions to the 4D attraction-repulsion chemotaxis system and applications of Brezis-Merle inequality. Nonlinearity. 2023. 36. 11. 5860-5883
  • Nakao Hayashi, Chunhua Li, Takayoshi Ogawa, Takuya Sato. Critical exponent for global existence of solutions to the Schrödinger equation with a nonlinear boundary condition. Nonlinear Analysis. 2023. 230. 113229-113229
more...
MISC (21):
  • Iwabuchi Tsukasa, Ogawa Takayoshi. Remarks on the ill-posedness results for the drift diffusion system (Harmonic Analysis and Nonlinear Partial Differential Equations). RIMS Kokyuroku Bessatsu. 2016. 56. 31-41
  • WELL-POSEDNESS OF THE COMPRESSIBLE NAVIER-STOKES-POISSON SYSTEM IN BESOV SPACES (Mathematical Analysis in Fluid and Gas Dynamics). 2016. 1985. 144-158
  • Iwabuchi Tsukasa, Ogawa Takayoshi. ILL-POSEDNESS FOR THE NONLINEAR SCHRODINGIER [SCHRODINGER] EQUATIONS IN ONE SPACE DIMENSION (Regularity and Singularity for Geometric Partial Differential Equations and Conservation Laws). RIMS Kokyuroku. 2015. 1969. 146-152
  • Ogawa Takayoshi, Shimizu Senjo. END-POINT MAXIMAL $L^1$ REGULARITY FOR A CAUCHY PROBLEM TO PARABOLIC EQUATIONS (Regularity and Singularity for Partial Differential Equations with Conservation Laws). RIMS Kokyuroku. 2015. 1962. 50-58
  • Takayoshi Ogawa, Tohru Ozawa. PREFACE. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. 2015. 14. 4. I-III
more...
Books (10):
  • リーマン積分からルベーグ積分へ : 積分論と実解析
    サイエンス社 2022 ISBN:9784781915531
  • 応用微分方程式
    朝倉書店 2017
  • Real Analytic Method for Nolinear Evolution Equations
    Springer Japan 2013 ISBN:9784621065143
  • Modern Mathematics in Japan --Towarding a new development---
    Suugaku Shobou 2010 ISBN:9784903342177
  • Mathematical analysis on the self-organization and self-similarity
    Kinokuniya CoLt 2009
more...
Lectures and oral presentations  (22):
  • Pseudo conformal structure and mass resonance for two dimensional quadratic nonlinear Schr ̈odinger system
    (Workshop for Nonlinear Partial Differential Equations in Zhejiang University 2015)
  • Ill-posedness for quadratic nonlinear Schr ̈ odinger equations in lower dimension and related topics,
    (Taiwanese Mathematical Society Annual Meeting 2014)
  • Threshold for the global behavior of solution to degenerate Keller-Segel (drift-diffusion) system in between critical exponents
    (“Mathematical Approaches to Pattern Formation 2014)
  • Threshold for the large time behavior of solutions to degenerate driff-diffusion system in between critical exponents
    (“Mathematics for Fluid Dynamics 2014)
  • Maximal L1 Regularity for the Cauchy Problem of Parabolic Equations
    (Mathamatical Theory of Gas and Fluids and Related Applications 2014)
more...
Professional career (1):
  • Doctor of Science (The University of Tokyo)
Committee career (8):
  • 2019/04 - 2021/03 京都大学数理解析研究所 専門委員
  • 2009/09 - 2020/09 函数方程式論福原賞選考委員会 福原賞選考委員
  • 2015/04 - 2018/03 日本学術振興会 学術システム研究センター研究員
  • 2015/04 - 2017/03 日本数学会 解析学賞選考委員会 解析学賞選考委員
  • 2009/04 - 2015/03 日本数学会 函数方程式論分科会 函数方程式論分科会委員
Show all
Awards (3):
  • 2021/04 - Ministry of Education, Culture, Sports, Science and Technology, Japan Commendataion of MEXT, Science and Technology Prize Research on the critical structure of nonlinear evolution equations and critical functional inequalities
  • 2019/09 - Mathematical Society of Japan Mathematical Society of Japan Autum Prize Research on the critical structure of nonlinear evolution equations
  • 2009/09/26 - 解析学賞委員会(日本数学会) Analysis Prize 実解析的手法による臨界型非線形偏微分方程式の研究
Association Membership(s) (1):
Mathematical Society of Japan
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page