Rchr
J-GLOBAL ID:200901050268195802   Update date: Nov. 19, 2024

Funahashi Akira

フナハシ アキラ | Funahashi Akira
Affiliation and department:
Job title: Professor
Homepage URL  (1): https://fun.bio.keio.ac.jp/
Research field  (2): Biological, health, and medical informatics ,  Systems genomics
Research keywords  (3): Computational Biology ,  Quantitative Biology ,  Systems Biology
Research theme for competitive and other funds  (24):
  • 2022 - 2028 Advanced Bioimaging Support
  • 2022 - 2026 Genome protection and repair mechanisms for the extreme desiccation tolerance, anhydrobiosis
  • 2020 - 2026 構造的・動力学的制約を活用した多元混合化学情報の解読とその応用
  • 2021 - 2026 機械学習を用いた精巣組織培養の自動最適化による精子形成の理解
  • 2020 - 2023 Development of a cell tracking algorithm using deep learning
Show all
Papers (133):
  • Taichi Kanazawa, Tatsuma Yao, Sora Takeshita, Tatsuki Hirai, Ryo Suenaga, Takahiro G Yamada, Yuta Tokuoka, Kazuo Yamagata, Akira Funahashi. Four-dimensional Label-free Live Cell Image Segmentation for Predicting Live Birth Potential of Mouse Embryos. 2024
  • Yuta Tokuoka, Tsutomu Endo, Takashi Morikura, Yuki Hiradate, Masahito Ikawa, Akira Funahashi. Deep Learning-based Automated Prediction of Mouse Seminiferous Tubule Stage by Using Bright-field Microscopy. 2024
  • Yusuke Hiki, Yuta Tokuoka, Takahiro G. Yamada, Akira Funahashi. Inference of Gene Regulatory Networks for Overcoming Low Performance in Real-world Data. 2024
  • Mengji Zhang, Yusuke Hiki, Akira Funahashi, Tetsuya J. Kobayashi. A Deep Position-encoding Model for Predicting Olfactory Perception from Molecular Structures and Electrostatics. npj Systems Biology and Applications. 2024
  • Shintaro Miyaki, Shori Nishimoto, Yuta Tokuoka, Takahiro G Yamada, Takashi Morikura, Akira Funahashi. Cell Segmentation Without Annotation by Unsupervised Domain Adaptation Based on Cooperative Self-learning. 2024
more...
MISC (60):
more...
Books (8):
  • 機械学習を生命科学に使う! : シークエンスや画像データをどう解析し、新たな生物学的発見につなげるか?
    羊土社 2020 ISBN:9784758103916
  • 数でとらえる細胞生物学
    羊土社 2020 ISBN:9784758121064
  • 組織としての生命
    慶應義塾大学出版会 2019
  • バイオインフォマティクス入門
    慶應義塾大学出版会 2015
  • Modeling and Simulation Using CellDesigner
    Springer 2014 ISBN:9781493908042
more...
Lectures and oral presentations  (69):
  • 深層学習が駆動する定量生物学の新展開
    (データ駆動生物学ワークショップ 2021)
  • CellDesigner: A modeling tool for biochemical networks
    (Computational Modeling in Biology Network 2020 (COMBINE 2020) 2020)
  • 一細胞系譜解析による低グルコース培養下大腸菌集団のATP濃度多様性の解明
    (日本数理生物学会 2020年度 年会 2020)
  • ライブセルイメージングと深層学習を用いた 胚発生過程定量システムの構築
    (第81回応用物理学会秋季学術講演会 2020)
  • 深層学習を用いたマウス発生過程における定量的指標の獲得
    (第30回日本サイトメトリー学会学術集会 2020)
more...
Education (3):
  • 2000 - 2000 Keio University Graduate School, Division of Science and Engineering Dept. of Computer Science
  • 1997 - 1997 Keio University Graduate School, Division of Science and Engineering Dept. of Computer Science
  • 1995 - 1995 Keio University Faculty of Science and Engineering Department of Electrical Engineering
Professional career (1):
  • Ph.D. (Keio University)
Work history (13):
  • 2022/04 - 現在 Dept. of Biosciences and Informatics, Keio University Professor
  • 2017/04 - 現在 Yamaguchi University Graduate School of Medicine 医学系研究科 Part-time teacher
  • 2007/04 - 現在 The Systems Biology Institute(SBI) Visiting Scientist
  • 2020/08 - 2023/03 Gunma University Center for Mathematics and Data Science Visiting Professor
  • 2009/04 - 2022/03 Associate Professor, Dept. of Biosciences and Informatics, Keio University
Show all
Committee career (19):
  • 2023/04 - 現在 Japan Society for the Promotion of Science Grant-in-Aid for Transformative Research Areas Advisor
  • 2020/05 - 現在 Google Summer of Code 2020 Google Summer of Code Mentors
  • 2019/04 - 現在 Japan Science and Technology Agency JST未来事業「共通基盤」領域 専門アドバイザー
  • 2011/02 - 現在 Frontiers Frontiers in Systems Biology Associate Editor
  • 2008 - 現在 Japanese Society for Quantitative Biology Core member of Japanese Society for Quantitative Biology
Show all
Awards (1):
  • 2015/10 - Japan Society for the Promotion of Science 平成27年度科学研究費審査委員表彰
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page