Rchr
J-GLOBAL ID:200901053358736585   Update date: Jul. 17, 2024

Shinichi Tajima

タジマ シンイチ | Shinichi Tajima
Affiliation and department:
Research field  (1): Basic analysis
Research theme for competitive and other funds  (37):
  • 2022 - 2027 Algebraic analysis of deformations of non-isolated singularities, computational complex analysis and algorithms
  • 2018 - 2022 Algebraic aanalysis of non-isolated singularities and computational complex analysis algorithms
  • 2015 - 2018 Singular statistics and computational algebraic analysis of machine learning models
  • 2012 - 2017 Residue theory on singular varieties and its applications
  • 2012 - 2015 Computational Complex Analysis of logarithmic vector fields, singular varieties and Algebraic Analysis Algorithms
Show all
Papers (227):
  • Katsusuke Nabeshima, Shinichi Tajima. Effective Algorithm for Computing Noetherian Operators of Positive Dimensional Ideals. Computer Algebra in Scientific Computing. 2023. 272-291
  • Shinichi Tajima, Katsusuke Nabeshima, Katsuyoshi Ohara, Yoko Umeta. Computing holonomic D-modules associated to a family of non-isolated hypersurface singularities via comprehensive Gröbner systems of PBW algebra. Mathematics in Computer Science. 2023. 17. 1
  • Katsusuke Nabeshima, Shinichi Tajima. CSSg method for several genericities of parametric systems. Japan Journal of Industrial and Applied Mathematics. 2022
  • Shinichi Tajima, Katsusuke Nabeshima. An effective method for computing Grothendieck point residue mappings. Journal of Algebra. 2022. 593. 568-588
  • Shinichi Tajima, Katsusuke Nabeshima. Computing Grothendieck Point Residues via Solving Holonomic Systems of First Order Partial Differential Equations. Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC. 2021. 361-368
more...
MISC (22):
  • 田島 慎一, 鍋島 克輔. 多項式函数のbifurcation setの計算法(1)-Methods for computing the bifurcation set of a polynomial function(1)-Computer Algebra : Foundations and Applications. 数理解析研究所講究録. 2023. 2255. 88-95
  • 鍋島 克輔, 田島 慎一. 正次元イデアルのネター作用素の計算と特異点-Noetherian operators of positive dimensional ideals and hypersurface singularities-Computer Algebra : Foundations and Applications. 数理解析研究所講究録. 2023. 2255. 75-87
  • 鍋島 克輔, 田島 慎一. CSSg method for several genericities of deformations of hypersurface singularities-可微分写像の特異点論及びその応用. 数理解析研究所講究録. 2022. 2226. 1-15
  • 鍋島 克輔, 田島 慎一. ネター作用素を用いた零次元イデアルの準素イデアル分解と復元-日本数式処理学会第30回大会報告. 数式処理 = Bulletin of the Japan Society for Symbolic and Algebraic Computation. 2022. 28. 1. 28-31
  • 田島 慎一, 小原 功任, 照井 章. 最小消去多項式を用いた一般固有ベクトル空間の構成-日本数式処理学会第30回大会報告. 数式処理 = Bulletin of the Japan Society for Symbolic and Algebraic Computation. 2022. 28. 1. 32-35
more...
Books (2):
  • SINGULARITIES IN GEOMETRY AND TOPOLOGY 2011
    MATH SOC JAPAN 2015 ISBN:9784864970266
  • Analyse microlocale sur les varietes de Cauchy-Riemann et problemes du prolongement des solutions holomorphes des equations aux derivees partielles
    1981
Lectures and oral presentations  (37):
  • Integral dependence relation と半擬斉次孤立特異点の $b$-関数
    (日本数学会函数論分科会 2017)
  • 収束冪級数環でのintegral numberの計算 グレブナー基底 vs 代数的局所コホモ ロジー類
    (日本数学会函数論分科会 2017)
  • Transformation law による Grothendieck local residue の計算
    (日本数学会函数論分科会 2017)
  • b-関数の根に付随したホロノミー系の局所コホモロジー解の計算
    (数式処理の新たな発展--その最新研究 2017)
  • Local cohomology, Grothendieck local residues and algorithms,
    (Workshop on Rresidues, dynamics and hyperfunctions 2017)
more...
Education (3):
  • 1978 - 1981 東京大学大学院 理学系研究科 数学専攻
  • 1976 - 1978 東京大学大学院 理学系研究科 数学専攻
  • 1971 - 1976 Tokyo Institute of Technology Faculty of Science
Professional career (1):
  • 理学博士 (東京大学)
Work history (6):
  • 2010/01/15 - University of Tsukuba Graduate School of Pure and Applied Sciences
  • 2003/04/01 - 2010/01/14 Niigata University Faculty of Engineering
  • 1994/04/01 - 2003/03/31 Niigata University Faculty of Engineering
  • 1993/01/01 - 1994/03/31 Niigata University
  • 1982/07/01 - 1993/01/01 Niigata University
Show all
Association Membership(s) (2):
JAPAN SOCIETY OF SYMBOLIC AND ALGEBRAIC COMPUTATIONS ,  日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page