Rchr
J-GLOBAL ID:200901060625012121   Update date: Oct. 13, 2020

Katsuhiro Moriya

モリヤ カツヒロ | Katsuhiro Moriya
Affiliation and department:
Job title: Professor
Homepage URL  (2): https://sites.google.com/view/moriyahyogo/starthttps://www.researchgate.net/profile/Katsuhiro_Moriya
Research field  (1): Geometry
Research keywords  (12): submanifold ,  connection ,  vector bundle ,  tt*-bundle ,  quaternionic holomorphic geometry ,  quaternionic complex differential geometry ,  surface ,  Riemann surface ,  conformal map ,  Integrable system ,  minimal surface ,  differential geometry
Research theme for competitive and other funds  (8):
  • 2017 - 2021 The representation formula for surfaces of higher codimension and submanifolds and its applications
  • 2015 - 2019 ツイスタープログラムに基づく四元数ケーラー多様体内の部分多様体の研究
  • 2016 - 2018 Minimal surfaces: integrable systems and visualisation
  • 2013 - 2017 Properties of super-conformal maps inherited from holomorphic map and its applications
  • 2011 - 2015 四元数ケーラー多様体内の部分多様体のツイスターリフトと四元数複素微分幾何学
Show all
Papers (28):
  • K. Leschke, K. Moriya. The $$\mu $$-Darboux transformation of minimal surfaces. manuscripta mathematica. 2020. 162. 3-4. 537-558
  • K. Leschke, K. Moriya. Simple factor dressing and the López-Ros deformation of minimal surfaces in Euclidean 3-space. Mathematische Zeitschrift. 2018. 291. 3. 1015-1058
  • Kazuyuki Hasegawa, Katsuhiro Moriya. Twistor Lifts and Factorization for Conformal Maps from a Surface to the Euclidean Four-space. Advances in Applied Clifford Algebras. 2017. 27. 2. 1243-1262
  • Katsuhiro Moriya. The schwarz lemma for super-conformal maps. Springer Proceedings in Mathematics and Statistics. 2017. 203. 59-68
  • K. Leschke, K. Moriya. Applications of Quaternionic Holomorphic Geometry to minimal surfaces. Complex Manifolds. 2016. 3. 1. 282-300
more...
Books (5):
  • Super-conformal surfaces associated with null complex holomorphic curves
    Institute of Mathematics, University of Tsukuba 2007
  • The denominators of Lagrangian surfaces in complex euclidean plane
    Institute of Mathematics, University of Tsukuba 2006
  • Minimal surfaces with rotational symmetry and their moduli spaces
    Institute of Mathematics, University of Tsukuba 2003
  • Surfaces of constant mean curvature
    Translations of Mathematical Monographs American Mathematical Society 2003
  • Moduli spaces of complete minimal surfaces of finite total curvature with one end
    Institute of Mathematics, University of Tsukuba 2002
Lectures and oral presentations  (68):
  • The spinor representation of a surface in an Euclidean space of arbitrary dimension
    (m:iv mini-workshop at University of Leicester 2018)
  • The spinor representation of conformal mappings of surfaces
    (Aspects of submanifolds and other related fields 2018)
  • The Schwarz lemma for conformal maps from the open unit disk into the Euclidean four-space
    (Geometry of Submanifolds and Integrable Systems 2018)
  • Complex structures of a vector bundle and harmonic maps into a sphere
    (Submanifolds at Yuzawa 2017 2017)
  • The Weierstrass representation for surfaces in Euclidean space of arbitrary dimension
    (MSJ Autumn Meeting 2016 2016)
more...
Professional career (1):
  • Doctor of Science (Tokyo Metropolitan University)
Work history (9):
  • 2019/04 - 現在 University of Hyogo Depatment of Material Sciences, Graduate School of Material Sciences Professor
  • 2011/10 - 2019/03 University of Tsukuba Faculty of Pure and Applied Sciences Assistant Professor
  • 2013/04 - 2013/08 Ibaraki University Faculty of Education Part-time Lecturer
  • 2007/04 - 2011/09 University of Tsukuba Graduate School of Pure and Applied Sciences Assistant Professor
  • 2004/04 - 2007/03 University of Tsukuba Graduate School of Pure and Applied Science Research Associate
Show all
Committee career (2):
  • 2013/08 - 2015/07 日本学術振興会 特別研究員等審査会専門委員及び国際事業委員会書面審査員
  • 2006 - 2006 日本数学会 岩波数学辞典第四版編集
Association Membership(s) (2):
European Mathematical Society ,  The Mathematical Society of Japan
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page