Rchr
J-GLOBAL ID:200901061412321828   Update date: Aug. 09, 2024

Tanabe Kenichiro

タナベ ケンイチロウ | Tanabe Kenichiro
Affiliation and department:
Research field  (3): Algebra ,  Applied mathematics and statistics ,  Basic mathematics
Research keywords  (4): vertex algebras ,  組合せ論 ,  codes ,  association schemes
Research theme for competitive and other funds  (16):
  • 2021 - 2024 頂点代数上の加群の拡張とテンソル積
  • 2018 - 2021 a generalization of the notion of a module for a vertex algebra
  • 2015 - 2018 modules for a vertex subalgebra
  • 2011 - 2016 Geometric moduli theory and its theoretical applications
  • 2012 - 2015 Study of representation theory of fixed point vertex subalgebras
Show all
Papers (24):
  • Kenichiro Tanabe. A Schur-Weyl type duality for twisted weak modules over a vertex algebra. Proceedings of the American Mathematical Society. 2024. 152. 9. 3743-3755
  • Kenichiro Tanabe. The irreducible weak modules for the fixed point subalgebra of the vertex algebra associated to a non-degenerate even lattice by an automorphism of order 2 (Part 1). Journal of Algebra. 2021. 575. 31-66
  • Kenichiro Tanabe. Simple Weak Modules for Some Subalgebras of the Heisenberg Vertex Algebra and Whittaker Vectors. Algebras and Representation Theory. 2020. 23. 1. 53-66
  • Kenichiro Tanabe. A generalization of intertwining operators for vertex operator algebras. JOURNAL OF ALGEBRA. 2017. 491. 372-401
  • Kenichiro Tanabe. SIMPLE WEAK MODULES FOR THE FIXED POINT SUBALGEBRA OF THE HEISENBERG VERTEX OPERATOR ALGEBRA OF RANK 1 BY AN AUTOMORPHISM OF ORDER 2 AND WHITTAKER VECTORS. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. 2017. 145. 10. 4127-4140
more...
MISC (7):
  • Fusion rules for the fixed point subalgebra of the vertex algebra associated with a non-degenerate and non-positive definite even lattice by an automorphism of order $2. to appear in Journal of Algebra and its Applications. 2024
  • Kenichiro Tanabe. The irreducible weak modules for the fixed point subalgebra of the vertex algebra associated to a non-degenerate even lattice by an automorphism of order 2 (Part 2). 2023
  • 田辺 顕一朗. 頂点代数のtwisted加群について (有限群とその表現, 頂点作用素代数, 組合せ論の研究). 数理解析研究所講究録. 2012. 1811. 1-12
  • Tanabe Kenichiro, Yamada Hiromichi. Fixed point subalgebras of lattice vertex operator algebras by an automorphism of order three(Group Theory and Related Topics). RIMS Kokyuroku. 2007. 1564. 76-84
  • Tanabe Kenichiro, Yamada Hiromichi. Ternary code VOA and an automorphism of order 3(Algebraic combinatorics and the related areas of research). RIMS Kokyuroku. 2006. 1476. 12-20
more...
Lectures and oral presentations  (7):
  • 頂点代数上の加群のシュアー・ワイル型双対性
    (日本数学会2024年度年会 2024)
  • 頂点代数上の加群のシュアー・ワイル型双対性
    (第39回代数的組合せ論シンポジウム 2023)
  • 頂点代数の twisted 弱加群の双対性
    (有限群論・駒場セミナー 2023)
  • Fusion rules for the xed point subalgebra of the vertex algebra associated with a non-degenerate and non-positive de nite even lattice by an automorphism of order 2
    (2023)
  • Fusion rules for the vertex algebra V_{L}^{+} when L is a non-positive definite even lattice.
    (Conference in finite groups and vertex algebras 2022)
more...
Professional career (1):
  • 博士(数理学) (九州大学)
Work history (5):
  • 2022/04 - 現在 Tokyo City University Faculty of Liberal Arts and Sciences Professor
  • 2007/04 - 2022/03 Hokkaido University
  • 2005 - 2007/03 Hokkaido University Faculty of Science, Department of Mathematics
  • 2001 - 2005 University of Tsukuba
  • 2000 - 2001 Pohang 工科大学校 研究員
Association Membership(s) (1):
日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page