Rchr
J-GLOBAL ID:200901079376754727   Update date: Mar. 05, 2022

NODA Takumi

ノダ タクミ | NODA Takumi
Affiliation and department:
Job title: Professor
Homepage URL  (1): http://www.ge.ce.nihon-u.ac.jp/~takumi/index.html
Research field  (1): Algebra
Research keywords  (3): Eisenstein series ,  Zeta-function ,  Analytic Number Theory
Research theme for competitive and other funds  (6):
  • 2016 - 2019 尖点形式に由来するゼータ母関数族の構成
  • 2014 - 2017 ゼータ関数・テータ関数の多重母関数-その定式化と挙動解明-
  • 2011 - 2013 実解析的アイゼンシュタイン級数を含む多重級数の研究
  • 2008 - 2010 実解析的アイゼンシュタイン級数の複素挙動
  • 2007 - 2009 非正則Eisenstein級数の挙動とq超幾何関数論
Show all
Papers (27):
  • T. Noda. Two zeta functions contained in the Poincare series. RIMS Kokyuroku. 2021. 2203. 135-139
  • 指数型Riemannゼータ母関数について. RIMS Kokyuroku. 2019. 2131. 159-165
  • T. Noda. Some generating functions of the Riemann zeta function. Proceedings of the Number Theory Week 2017. 2019. 118. 107-111
  • Masanori Katsurada, Takumi Noda. Transformation formulae and asymptotic expansions for double holomorphic Eisenstein series of two complex variables. RAMANUJAN JOURNAL. 2017. 44. 2. 237-280
  • Masanori Katsurada, Takumi Noda. Transformation formulae and asymptotic expansions for double holomorphic Eisenstein series of two complex variables (summarized version). RIMS Kokyuroku. 2016. 2013. 157-169
more...
Lectures and oral presentations  (60):
  • Transformations and asymptotics for a class of Dirichlet-Hurwitz-Lerch Eisenstein series
    (Seminar on Diophantine Analysis and Related Fields 2022)
  • Asymptotics for Dirichlet-Hurwitz-Lerch type Eisenstein series and,applications
    (RIMS "Analytic Number Theory" 2021)
  • Riemann ゼータ母関数の積分表示と応用
    (大分整数論研究集会 (Zoom) 2020)
  • リーマンゼータ母関数の関数関係式
    (日本数学会東北支部会 2020)
  • 数学教育と情報保護技術の原始構造
    (福島県高等学校教育研究会数学部会いわき支部第1回研修会 2019)
more...
Education (1):
  • - 1995 Tokyo Institute of Technology Department of Mathematics
Association Membership(s) (1):
日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page