Research theme for competitive and other funds (18):
2022 - 2027 非線形消散波動方程式の一般論の構築と宇宙論および流体力学への応用
2019 - 2024 Unravel higher order critical structures to solutions of nonlinear dispersive and dissipative partial differential equations
2018 - 2022 非線形消散波動方程式の解がもつ波動的性質の解明
2015 - 2019 高次元波動方程式の基本解に含まれる微分損失が非線形問題に与える影響の解析
2012 - 2016 Global behavior for nonlinear wave
2012 - 2015 高次元非線形波動方程式の臨界状態の解析とその応用
2009 - 2014 On analysis of interacting nonlocal waves
2010 - 2012 Research on oscillation problems for degenerate hyperbolic equations
2007 - 2008 地震波を含む非線形波動の数理解析
2004 - 2006 The initial-boundary value problem for a system of nonlinear elastic waves
2002 - 2003 非線型発展方程式の解の延長
2002 - 2002 非線形波動方程式系の解の振動と幾何学的構造との関係の解析
1999 - 2000 Smoothing effect of Partial differential equations
1997 - 1998 幾何の問題に現れる双曲型方程式の解析
1996 - 1996 Studies on differential equations by microlocal analysis
1995 - 1995 波動方程式の基本解の表示とその応用
1993 - 1993 非線型波動方程式に対する初期値問題
1992 - 1992 徴分方程式および作用素論と関連分野の研究
Show all
Papers (51):
Kerun Shao, Hiroyuki Takamura, Chengbo Wang. Blow-up of solutions to semilinear wave equations with spatial derivatives. 2025. 45. 2. 410-425
Yuki Haruyama, Hiroyuki Takamura. Blow-up of classical solutions of quasilinear wave equations in one space dimension. Nonlinear Analysis, RWA. 2025. 81. 104212
Ryuki Kido, Takiko Sasaki, Shu Takamatsu, Hiroyuki Takamura. The generalized combined effect for one dimensional wave equations with semilinear terms including product type. J. Differential Equations. 2024. 403. 576-618
Shunsuke Kitamura, Hiroyuki Takamura, Kyouhei Wakasa. The lifespan estimates of classical solutions of one dimensional semilinear wave equations with characteristic weights. Journal of Mathematical Analysis and Applications. 2023. 528. 127516-127516
Katsuaki Morisawa, Takiko Sasaki, Hiroyuki Takamura. Erratum to "The combined effect in one space dimension beyond the general theory for nonlinear wave equations". Communications on Pure and Applied Analysis. 2023. 22. 10. 3200-3202
Takiko Sasaki, Hiroyuki Takamura. Note on the existence of classical solutions of derivative semilinear models for one dimensional wave equation. 2024
Ning-An Lai, Alessandro Palmieri, Hiroyuki Takamura. A blow-up result for the semilinear Euler-Poisson-Darboux-Tricomi equation with critical power nonlinearity. 2024
Hiroyuki Takamura. Recent developments on the lifespan estimate for classical solutions of nonlinear wave equations in one space dimension. 2023