Rchr
J-GLOBAL ID:200901086769471170   Update date: Apr. 09, 2024

NAKAI Eiichi

ナカイ エイイチ | NAKAI Eiichi
Affiliation and department:
Job title: Project Researcher
Homepage URL  (1): http://enakai.sci.ibaraki.ac.jp/
Research field  (2): Mathematical analysis ,  Basic analysis
Research theme for competitive and other funds  (39):
  • 2021 - 2026 平均振動量・増大度が一様でない関数空間の理論と応用
  • 2020 - 2025 A new refinement allowing infinite-order degeneration and explosion of weighted classical inequalities and its application to variational problems
  • 2020 - 2025 一般調和解析に由来する増大条件を伴う関数空間の深化と展開
  • 2020 - 2025 調和解析における実関数論の方法とその応用
  • 2019 - 2022 種々のマルティンゲール空間とその上の分数べき積分作用素および交換子
Show all
Papers (94):
  • Eiichi Nakai. The convergence problem of multiple Fourier series and Gauss's circle problem. Nihon University College of Economics, Research Bulletin. 2023. 98. 139-157
  • Ryota Kawasumi, Eiichi Nakai and Minglei Shi. Characterization of the boundedness of generalized fractional integral and maximal operators on Orlicz-Morrey and weak Orlicz-Morrey spaces. Mathematische Nachrichten. 2023. 296. 4. 1483-1503
  • Amagai, Kohei; Nakai, Eiichi; Sadasue, Gaku;. Generalized Fractional Integral Operators Based on Symmetric Markovian Semigroups with Application to the Heisenberg Group. Taiwanese Journal of Mathematics. 2023. 27. 1. 113-139
  • Satoshi Yamaguchi, Eiichi Nakai. Compactness of Commutators of Integral Operators with Functions in Campanato Spaces on Orlicz-Morrey Spaces. Journal of Fourier Analysis and Applications. 2022. 28. 2. Paper No.33-32pp
  • Mitsuo Izuki, Eiichi Nakai and Yoshihiro Sawano. Atomic and wavelet characterizations of Musielak--Orlicz Hardy spaces for generalized Orlicz functions. Integral Equations and Operator Theory. 2022. 94. 1. Article 3, 33pp
more...
MISC (5):
  • 中井 英一, 貞末 岳. Fractional integrals on martingale spaces (関数空間の構造とその周辺). 数理解析研究所講究録. 2017. 2041. 220-226
  • IZUKI Mitsuo, NAKAI Eiichi, SAWANO Yoshihiro. Hardy spaces with variable exponent (Harmonic Analysis and Nonlinear Partial Differential Equations). RIMS Kokyuroku Bessatsu. 2013. 42. 109-136
  • Nakai Eiichi, Sadasue Gaku. Martingale Morrey-Campanato spaces (Banach space theory and related topics). RIMS Kokyuroku. 2011. 1753. 58-66
  • Eiichi Nakai. Recent topics of fractional integrals. Sugaku Expositions. 2007. 20. 2. 215--235-235
  • NAKAI E. On generalized fractional integrals on the weak Orlicz spaces, BMO_φ, the Morrey spaces and the Campanato spaces. Function spaces, interpolation theory and related topics (Lund, 2000). 2002
Books (2):
  • Harmonic Analysis and its Applications
    Yokohama Publishers 2006 ISBN:4946552200
  • 解析入門
    内田老鶴圃 1998 ISBN:4753600955
Lectures and oral presentations  (18):
  • Generalized Campanato spaces with variable growth condition and related topics
    (MSJ Autumn Meeting 2023 2023)
  • Bi-preduals of generalized Campanato spaces with variable growth condition
    (MSJ Autumn Meeting 2023 2023)
  • On the critical Caffarelli-Kohn-Nirenberg type inequalities involving super-logarithms
    (MSJ Autumn Meeting 2023 2023)
  • Bi-predual spaces of Campanato spaces and integral operators
    (2023)
  • Generalized Campanato spaces with variable growth condition and related topics
    (MSJ Spring Meeting 2023 2023)
more...
Professional career (2):
  • 理学修士 (茨城大学)
  • Doctor (Nara Women's University)
Committee career (7):
  • 2012/03 - 現在 国際数理科学協会 SCIENTIAE MATHEMATICAE JAPONICAE 編集委員
  • 2010/04 - 現在 インドネシア数学会 Journal of the Indonesian Mathematical Society 編集委員
  • 2011/04 - 2023/03 Department of Mathematics, Ibaraki University Editor of Mathematical Journal of Ibaraki University
  • 2021/03 - 2022/02 The Mathematical Society of Japan Councilor
  • 2011/07 - 2015/06 日本数学会 数学編集委員
Show all
Awards (1):
  • 2022/09 - The Mathematical Society of Japan The 2022 MSJ Analysis Prize Harmonic analysis on generalized Morrey-Campanato spaces and related studies
Association Membership(s) (2):
International Society for Mathematical Sciences ,  The Mathematical Society of Japan
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page