Rchr
J-GLOBAL ID:200901086890294170
Update date: Sep. 24, 2024
Matsuyama Tokio
マツヤマ トキオ | Matsuyama Tokio
Affiliation and department:
Job title:
Professor
Research field (1):
Basic analysis
Research keywords (1):
Theory of Partial Differential Equations
Research theme for competitive and other funds (15):
- 2022 - 2025 特異積分と関数空間の研究(多重線形作用素の理論の深化)
- 2018 - 2023 Global analysis of the Kirchhoff equation
- 2019 - 2022 A study of multilinear operators
- 2015 - 2018 A study of singular integral operators
- 2015 - 2018 Global theory of the Kirchhoff equation
- 2012 - 2015 A study of singular integrals and function spaces
- 2012 - 2014 Dispersion for Kirrchhoff equation
- 2009 - 2014 キルヒホッフ方程式の散逸評価
- 2009 - 2011 Study of singular integrals and function spaces
- 2007 - 2008 Nonlinear hyperbolic-parabolic singular perturbation
- 2006 - 2008 Almost periodic oscillations of linear and nonlinear hyperbolic equations
- 2004 - 2005 波動方程式の漸近挙動に関する研究
- 2003 - 2005 The global behavior of solutions of evolution equations in noncylindrical domain with time-moving boundaries
- 2000 - 2002 Research on the Behavior of Solutions Evolution Equations in Time-Almost Periodic Noncylindrical Domains
- 1999 - 2000 外部領域における波動方程式の解の漸近挙動
Show all
Papers (40):
-
Iwabuchi, Tsukasa, Matsuyama, Tokio, Taniguchi, Koichi. Bilinear estimates in Besov spaces generated by the Dirichlet Laplacian. J. Math. Anal. Appl. 2021. 494. 2. 124640-124640
-
Tokio Matsuyama, Michael Ruzhansky. On the Gevrey well-posedness of the Kirchhoff equation. Journal d'Analyse Mathématique. 2019. 137. 1. 449-468
-
T. Iwabuchi, T. Matsuyama, K. Taniguchi. Besov spaces on open sets. Bull. Sci. Math. 2019. 152. 93-149
-
Tsukasa Iwabuchi, Tokio Matsuyama, Koichi Taniguchi. Boundedness of spectral multipliers for Schrödinger operators on open sets. Revista Matemática Iberoamericana. 2018. 34. 3. 1277-1322
-
Tokio Matsuyama, Michael Ruzhansky. Almost global well-posedness of Kirchhoff equation with Gevrey data. COMPTES RENDUS MATHEMATIQUE. 2017. 355. 5. 522-525
more...
MISC (1):
-
松山登喜夫, 望月清. 書評:「フーリエ解析入門」(プリンストン解析学講義I). 数学通信. 2010. 121-123
Books (1):
-
微分方程式を解く 解の存在・非存在
サイエンス社 2023
Lectures and oral presentations (73):
-
Blowup rate for solutions to the Kirchhoff equation
(International Conference on Generalized Functions 2024)
-
Blow-up of the higher order energy of the solutions to the Kirchhoff equation
(More Anomalies in Partial Differential Equations 2023)
-
On wave equation outside trapping obstacles and local energy decay in odd space dimensions
(International Conference on Generalized Functions 2022)
-
Long time existence of the Kirchhoff equation
(Dispersive and subelliptic PDEs, Centro di Ricerca Matematica, Ennio De Giorgi, Scuola Normale Superiore di Pisa 2020)
-
Analytic well-posedness for wave equation with time-dependent coefficient, with application to the Kirchhoff equation
(Séminaires Equations aux Dérivées Partielles, Université de Franche-Comté, Laboratoire Mathématique de Besançon 2019)
more...
Education (2):
- 1983 - 1986 Tokyo Metropolitan University Graduate School, Division of Natural Science Mathematics
- 1978 - 1983 Tokyo Metropolitan University Faculty of Science Department of Mathematics
Professional career (2):
- 理学修士 (東京都立大学)
- 博士(理学) (東京都立大学)
Work history (7):
Committee career (4):
- 2020/04 - 2024/03 Tokyo Journal of Mathematics 編集委員長
- 2017/04 - 2019/03 Tokyo Journal of Mathematics 副編集委員長
- 2015/04 - 2017/03 Tokyo Journal of Mathematics 編集委員
- 2010/04 - 2011/03 Tokyo Journal of Mathematics 編集委員
Association Membership(s) (1):
Return to Previous Page