Rchr
J-GLOBAL ID:201101067705643788   Update date: Sep. 07, 2023

Miyoshi Takemasa

ミヨシ タケマサ | Miyoshi Takemasa
Affiliation and department:
Other affiliations (6):
Show all
Homepage URL  (1): http://data-assimilation.riken.jp/~miyoshi/
Research field  (1): Atmospheric and hydrospheric science
Papers (175):
  • Honda T, Sato, Y, Miyoshi, T. Regression-based ensemble perturbations for the zero-gradient issue posed in lightning-flash data assimilation with an ensemble Kalman filter. Monthly Weather Review. 2023
  • Shun Ohishi, Takemasa Miyoshi, Misako Kachi. LORA: a local ensemble transform Kalman filter-based ocean research analysis. Ocean Dynamics. 2023
  • James Taylor, Takumi Honda, Arata Amemiya, Shigenori Otsuka, Yasumitsu Maejima, Takemasa Miyoshi. Sensitivity to Localization Radii for an Ensemble Filter Numerical Weather Prediction System with 30-Second Update. Weather and Forecasting. 2023
  • Shunji Kotsuki, Koji Terasaki, Masaki Satoh, Takemasa Miyoshi. Ensemble-based Data Assimilation of GPM DPR Reflectivity: Cloud Microphysics Parameter Estimation with the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). 2023
  • T. Honda, A. Amemiya, S. Otsuka, J. Taylor, Y. Maejima, S. Nishizawa, T. Yamaura, K. Sueki, H. Tomita, T. Miyoshi. Advantage of 30-s-Updating Numerical Weather Prediction With a Phased-Array Weather Radar Over Operational Nowcast for a Convective Precipitation System. Geophysical Research Letters. 2022. 49. 11
more...
MISC (133):
more...
Professional career (1):
  • Ph.D. (University of Maryland)
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page