Rchr
J-GLOBAL ID:201301083924920118   Update date: Nov. 18, 2024

Watanabe Hiroshi

ワタナベ ヒロシ | Watanabe Hiroshi
Affiliation and department:
Homepage URL  (1): http://kaken.nii.ac.jp/d/r/30609912.ja.html
Research field  (2): Mathematical analysis ,  Basic analysis
Research keywords  (14): 退化拡散 ,  有界変動関数 ,  結晶粒界現象 ,  変分法 ,  非線形偏微分方程式 ,  関数解析 ,  実解析 ,  Entropy Solutions ,  Nonlinear Evolution Equations ,  Nonlinear Analysis ,  リプシッツ作用素半群 ,  適切性 ,  放物型方程式 ,  非線形境界条件
Research theme for competitive and other funds  (7):
  • 2021 - 2025 特異性を伴う非線形偏微分方程式の解構造に着目した数学解析
  • 2020 - 2023 Evolution operators with non-densely defined generators and its applications
  • 2016 - 2021 Mathematical Analysis for Thermoelasticity and Thermoelastoplasticity
  • 2017 - 2020 Studies on well-posedness for quasilinear partial differential equations with constraints
  • 2014 - 2017 Well-posedness for partial differential equations with time-dependent constraints
Show all
Papers (23):
  • Hiroshi Watanabe. N-wave-like properties for entropy solutions to scalar parabolic-hyperbolic conservation laws. Nonlinear Analysis: Real World Applications. 2025. to appear
  • Salvador Moll, Ken Shirakawa, Hiroshi Watanabe. Large-time behavior for a phase-field system of 3D-grain boundary motion. SIAM Journal on Mathematical Analysis. 2024. 56. 5. 6885-6914
  • Salvador Moll, Ken Shirakawa, Hiroshi Watanabe. Existence of Solutions to a Phase-Field Model of 3D Grain Boundary Motion Governed by a Regularized 1-Harmonic Type Flow. Journal of Nonlinear Science. 2023. 33. 5
  • Hiroshi Watanabe. Particular solutions to one-dimensional Cauchy problems for scalar parabolic-hyperbolic conservation laws and their applications. Nonlinear Differential Equations and Applications NoDEA. 2022. 29. 4
  • Salvador Moll, Ken Shirakawa, Hiroshi Watanabe. Kobayashi-Warren-Carter type systems with nonhomogeneous Dirichlet boundary data for crystalline orientation. Nonlinear Analysis. 2022. 217. 112722-112722
more...
MISC (34):
  • 渡邉紘, S.Moll, 白川健. 3次元結晶粒界運動のフェーズフィールドモデルに対する解の時間大域的挙動. 第49回発展方程式研究会予稿集. 2023. 87-90
  • 渡邉 紘, 白川 健, S. Moll. 結晶粒界現象を記述する3次元モデルの解の存在. 第48回発展方程式研究会予稿集. 2022. 42-45
  • 渡邉 紘. 放物型・双曲型単独保存則に対するOleinik型エントロピー評価. 第47回発展方程式研究会予稿集. 2021. 36-38
  • 渡邉 紘. 放物型・双曲型単独保存則の1次元初期値問題に対する複数の不連続点を持つ進行波. 第46回発展方程式研究会予稿集. 2020. 81-83
  • 渡邉 紘. 放物型・双曲型単独保存則に対する1次元初期値問題の進行波の構成. 第45回発展方程式研究会予稿集. 2019. 86-89
more...
Lectures and oral presentations  (125):
  • On some scalar parabolic-hyperbolic conservation laws
    (Italian-Japanese Workshop on Variational Perspectives for PDEs 2024)
  • A constrained gradient system associated with 3D grain boundary motion
    (The 81th Fujihara seminar, ``Mathematical Aspects for Interfaces and Free Boundaries'' 2024)
  • 3次元結晶粒界現象を記述する数学モデルに対する可解性と解挙動
    (熊本大学応用解析セミナー 2024)
  • 結晶粒界現象を記述する3次元モデルの可解性と解挙動
    (Workshop on Analysis in Kagurazaka 2024 2024)
  • 3次元結晶粒界運動のフェーズフィールドモデルに対する解の時間大域的挙動
    (第49回発展方程式研究会 2023)
more...
Education (2):
  • 2007 - 2010 Chuo University
  • 2005 - 2007 Chuo University
Professional career (1):
  • 博士(理学) (中央大学)
Work history (4):
  • 2017/04 - 現在 Oita University Faculty of Science and Technology , Department of Integrated Science and Technology
  • 2016/04 - 2017/03 Oita university Faculty of Engineering, Department of Computer Science and Intelligent Systems Associate Professor
  • 2014/04 - 2016/03 Salesian Polytechnic Department og General Education Associate Professor
  • 2011/04 - 2014/03 Salesian Polytechnic Department of General Education Assistant Professor
Association Membership(s) (1):
THE MATHEMATICAL SOCIETY OF JAPAN
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page