Rchr
J-GLOBAL ID:201401028269036990   Update date: Oct. 15, 2024

Kaneko Megumi

Kaneko Megumi
Affiliation and department:
Job title: Professor
Other affiliations (1):
  • The University of Tokyo  The Graduate School of Information Science and Technology, Department of Computer Science   Professor
Research field  (1): Information networks
Research keywords  (4): IoT Wireless Networks ,  Mobile communication systems ,  Radio Resource Allocation ,  Wireless Communications
Research theme for competitive and other funds  (19):
  • 2024 - 2029 Open Digital Infrastructure through the Convergence of Telecommunications and AI
  • 2023 - 2027 LIGHTweight edge artificial intelligence for Sensing and WIreless communications in connected FacTories (LIGHT-SWIFT)
  • 2022 - 2027 Energy and Radio Resource Efficiency Optimization for 6G Smart IoT Communications
  • 2023 - 2024 Optimized Multi-Connectivity and Resource Utilization for High Reliability Wireless Communications
  • 2020 - 2024 Researches on Model-aided Learning Approaches for Reliable Realtime Control in Future Wireless Systems
Show all
Papers (122):
  • Jiali Wang, Megumi Kaneko. Exploiting Beam Split-based Multi-User Diversity in Terahertz MIMO-OFDM Systems. IEEE Wireless Communications Letters. 2024. 1-5
  • H. De Oliveira, M. Kaneko, L. Boukhatem. Smart Band Association for Wireless IoT Networks: a Personalized Federated Multi-Agent Deep Reinforcement Learning Approach. IEEE VTC-Fall 2024. 2024. 1-6
  • H. De Oliveira, M. Kaneko, L. Boukhatem. Federated Multi-Agent Deep Reinforcement Learning for Intelligent IoT Wireless Communications. IEEE Vehicular Technology Magazine. 2024
  • Y. Shnaiwer, M. Kaneko. A Risk-Averse Outage Probability Minimization Method for RIS-Aided RSMA Systems. IEEE Networking Letters. 2024
  • Megumi Kaneko, Thi Ha Ly Dinh, Yousef Shnaiwer, Kenichi Kawamura, Daisuke Murayama, Yasushi Takatori. A Multi-Agent Risk-Averse Reinforcement Learning Method for Reliability Enhancement in Sub-6GHz/mmWave Mobile Networks. IEEE Wireless Communications Letters. 2024
more...
MISC (99):
  • Y. Shnaiwer, M. Kaneko. Optimized Multi-Connectivity and Resource Utilization for High Reliability Wireless Communications (FY2023). NTT Technical Report. 2024. 1-61
  • 金子 めぐみ. 無線資源・エネルギー資源を最大限に活かす無線ネットワーク設計. SICE 計測と制御 「FACE the future」. 2023. 62. 10. 1-2
  • A Multi-Agent Risk-Averse Reinforcement Learning Method for Improving Reliability in Sub6GHz/mmWave Wireless Networks. RCS Technical Report. 2023. 123. 224. 25-25
  • T.H.L. Dinh, M. Kaneko. Optimized Multi-Connectivity and Resource Utilization for High Reliability Wireless Communications (FY2022). NTT Technical Report. 2023. 1-74
  • T.H.L. Dinh, M. Kaneko, K. Kawamura, D. Murayama, T. Moriyama, Y. Takatori. A Multi-Agent Risk-Averse Reinforcement Learning Method for Reliability Enhancement in Sub6GHz/mmWave Networks. Proc. of IEICE General Conference, BS-2-7. 2023. 1-2
more...
Patents (17):
  • 複数無線インタフェースを備える無線機器での接続先の最適化方法およびシステム
  • Wireless Communication Control Method, Wireless Communication System, Wireless Communications Program
  • Apparatus for centralized unit, communication systems, methods and programs
  • Apparatus for communication systems, methods and programs
  • Wireless Communication System, Wireless Terminal, Centralized Controller and Wireless Communication Methods
more...
Lectures and oral presentations  (58):
  • « LIGHT-SWIFT » LIGHTweight edge artificial intelligence for Sensing and WIreless communications in connected FacTories
    (ANR/JST SICORP Edge AI Kickoff Workshop 2024)
  • マルチ無線アクセス環境における、高信頼用通信のための利用無線リソース最適制御技術~NTT-NII共同研究 (R5)~
    (NTT セミナー 2024)
  • Spectrum and Energy Efficiency Optimization for Next Generation Wireless Communications Systems ~ Overview of Research Activities ~
    (Invited Talk at INRIA-INSA Lyon, France 2023)
  • A Multi-Agent Risk-Averse Reinforcement Learning Method for Improving Reliability in Sub6GHz/mmWave Wireless Networks
    (IEICE RCS workshop 2023)
  • 次世代無線通信システムのための無線資源とエネルギー資源の利用最適化
    (東京大学 コンピュータ科学専攻講演会 2023)
more...
Professional career (2):
  • HDR (Habilitation à Diriger des Recherches) (Paris-Sud University, France)
  • Ph.D. (Aalborg University, Denmark)
Work history (9):
  • 2024/10 - 現在 The University of Tokyo The Graduate School of Information Science and Technology, Department of Computer Science Professor
  • 2024/04 - 現在 National Institute of Informatics Information Systems Architecture Science Research Division Professor
  • 2016/04 - 2024/03 National Institute of Informatics Information Systems Architecture Science Research Division Associate Professor
  • 2017/05 - Paris-Saclay University/Paris-Sud University Laboratoire de Recherche en Informatique (LRI) Habilitation à Diriger des Recherches (HDR)
  • 2016/05 - 2016/06 Paris-Sud University Laboratoire de Recherche en Informatique (LRI) Invited Professor
Show all
Committee career (31):
  • 2022/06 - 現在 IEEE Wireless Communications Letters Associate Editor
  • 2020/09 - 現在 Ministry of Foreign Affairs of Japan (MOFA) Member of the Advisory Board for Promoting Science and Technology Diplomacy
  • 2020/02 - 現在 IEEE Transactions on Wireless Communications Associate Editor
  • 2019/09 - 現在 IEEE Communications Letters Associate Editor
  • 2018/10 - 現在 総務省 総合通信基盤局 電波部 電波政策課 「戦略的情報通信研究開発推進事業(SCOPE)」専門評価委員
Show all
Awards (13):
  • 2023/04 - IEEE INFOCOM 2023 (Core Rank A*) Distinguished TPC Member
  • 2023/01 - IEEE Consumer Communications & Networking Conference (IEEE CCNC) 2023 Best Paper Runner-Up Award (2nd over 271, top 0.7%) "Deep Reinforcement Learning-based Uplink Power Control in Cell-Free Massive MIMO"
  • 2021/09 - KDDI Foundation 2021 KDDI Foundation's Contribution Award for outstanding research on improving radio resource utilization in mobile networks
  • 2020/12 - IEEE Communications Letters Exemplary Editor Award
  • 2019/04 - The Young Scientists’ Prize from the Minister of Education, Culture, Sports, Science and Technology of Japan
Show all
Association Membership(s) (3):
IEICE ,  IEEE Senior Member ,  ACM
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page