Rchr
J-GLOBAL ID:201401033346065277   Update date: Jul. 22, 2024

Kishimoto Nobu

Kishimoto Nobu
Research field  (1): Mathematical analysis
Research keywords  (3): Well-posedness ,  Nonlinear dispersive equations ,  Partial differential equations
Research theme for competitive and other funds  (7):
  • 2022 - 2027 Global analysis for nonlinear dispersive equations
  • 2020 - 2025 分散性を持つ非線形波動における共鳴相互作用の役割の究明
  • 2016 - 2023 非線形分散型波動方程式における共鳴相互作用の構造と解の挙動・特異性の研究
  • 2017 - 2022 Analysis of concentration phenomena for nonlinear wave and dispersive equations
  • 2012 - 2016 Existence and global behavior of spatially periodic solutions to the initial value problems for nonlinear dispersive equations
Show all
Papers (40):
  • Nobu Kishimoto, Yoshio Tsutsumi. Local well-posedness for the kinetic derivative nonlinear Schrödinger equation on the real line. Advanced Studies in Pure Mathematics (to appear). 2024
  • Nobu Kishimoto, Yoshio Tsutsumi. Gauge transformation for the kinetic derivative nonlinear Schrödinger equation on the torus. preprint. 2023
  • Nobu Kishimoto, Yoshio Tsutsumi. Well-posedness of the Cauchy problem for the kinetic DNLS on T. Journal of Hyperbolic Differential Equations. 2023. 20. 01. 27-75
  • Nobu Kishimoto, Yoshio Tsutsumi. Low regularity a priori estimate for KDNLS via the short-time Fourier restriction method. Advances in Continuous and Discrete Models. 2023. 2023. 1. 10
  • Nobu Kishimoto. Unconditional uniqueness for the periodic Benjamin-Ono equation by normal form approach. Journal of Mathematical Analysis and Applications. 2022. 514. 2. 126309
more...
MISC (4):
  • Nobu Kishimoto. Analysis on nonlinear Schrödinger equations with higher order terms (in Japanese). 2018. 98-107
  • Nobu Kishimoto, Yoshio Tsutsumi. Ill-posedness of the Cauchy problem for the nonlinear Schrödinger equation with Raman scattering term. RIMS Kôkyûroku. 2018. 2076. 203-210
  • Nobu Kishimoto. Remark on global regularity for the rotating Navier-Stokes equations in a periodic domain. RIMS Kôkyûroku. 2018. 2070. 1-16
  • N. Kishimoto. Local and global well-posedness for the KdV equation at the critical regularity (Nonlinear evolution equations and mathematical modeling). RIMS Kôkyûroku. 2010. 1693. 68-84
Lectures and oral presentations  (98):
  • Characterization of three-dimensional Euler flows supported on finitely many Fourier modes
    (Analysis of PDEs in Fluid 2024)
  • On unconditional uniqueness for the derivative NLS
    (3rd Harmonic Analysis Workshop in Seoul 2023)
  • On well-posedness for the kinetic derivative NLS
    (One-day seminar series at Ewha Womans University 2023)
  • Unconditional uniqueness for the derivative nonlinear Schrödinger equation
    (International Workshop on "Fundamental Problems in Mathematical and Theoretical Physics" 2023)
  • Local well-posedness for the kinetic derivative nonlinear Schrödinger equation on the real line
    (14th ISAAC Congress, Session: Function Spaces and their Applications to Nonlinear Evolutional Equations 2023)
more...
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page