Rchr
J-GLOBAL ID:201501088531607716   Update date: Oct. 18, 2023

Hamamuki Nao

ハマムキ ナオ | Hamamuki Nao
Affiliation and department:
Job title: Associate Professor
Research field  (1): Mathematical analysis
Research keywords  (5): Level set method ,  Nonlinear partial differential equations ,  Comparison principle ,  Hamilton-Jacobi equation ,  Viscosity solution
Research theme for competitive and other funds  (7):
  • 2023 - 2027 界面発展方程式と粘性解の形状解析
  • 2019 - 2023 特異構造を持つ界面発展方程式と境界値問題
  • 2018 - 2019 Analysis of boundary value problems for fully nonlinear partial differential equations and its applications
  • 2016 - 2019 離散と連続をつなぐ粘性解理論の構築
  • 2015 - 2016 界面ダイナミクスの数学解析に向けた粘性解理論の深化
Show all
Papers (23):
  • N. Hamamuki, K. Hirose. A dynamical approach to lower gradient estimates for viscosity solutions of Hamilton-Jacobi equations. SIAM Journal on Mathematical Analysis. 2023. 55. 4. 3169-3204
  • N. Hamamuki, K. Misu. Weak comparison principles for fully nonlinear degenerate parabolic equations with discontinuous source terms. Minimax Theory and its Applications. 2023. 8. 1. 37-60
  • N. Hamamuki, S. Kikkawa. A lower spatially Lipschitz bound for solutions to fully nonlinear parabolic equations and its optimality. Indiana University Mathematics Journal. 2023. 72. 2. 455-487
  • Y. Fujita, N. Hamamuki, N. Yamaguchi. A self-affine property of evolutional type appearing in a Hamilton-Jacobi flow starting from the Takagi function. Michigan Mathematical Journal. 2022. 71. 1. 105-120
  • N. Hamamuki, K. Misu. A weak comparison principle and asymptotic behavior of viscosity solutions to the mean curvature flow equation with discontinuous source terms. RIMS Kokyuroku. 2022. 2212. 41-53
more...
Lectures and oral presentations  (31):
  • Waiting time effects for the wearing process of a non-convex stone
    (10th International Congress on Industrial and Applied Mathematics - ICIAM 2023 2023)
  • 非凸な石の摩耗過程における待ち時間効果
    (日本応用数理学会2022年度年会 2022)
  • 平均曲率流方程式のゲーム解釈と動的境界値問題
    (日本数学会北海道支部講演会・支部総会 2021)
  • A lower spatially Lipschitz bound for solutions to fully nonlinear parabolic equations and its optimality
    (偏微分方程式セミナー(北海道大学) 2021)
  • A lower spatially Lipschitz bound for solutions to fully nonlinear parabolic equations and its optimality
    (広島微分方程式研究会 2021)
more...
Education (2):
  • 2009 - 2013 The University of Tokyo Graduate School of Mathematical Sciences
  • 2005 - 2009 The University of Tokyo Faculty of Science Department of Mathematics
Professional career (1):
  • Doctor of Philosophy in the field of Mathematical Sciences (The University of Tokyo)
Work history (4):
  • 2016/10 - 現在 Hokkaido University Department of Mathematics Associate Professor
  • 2015/02 - 2016/09 Hokkaido University Department of Mathematics Assistant Professor
  • 2014/04 - 2015/01 Waseda University Faculty of Education and Integrated Arts and Sciences JSPS Research Fellowship PD
  • 2013/10 - 2014/03 The University of Tokyo Graduate School of Mathematical Sciences JSPS Research Fellowship PD
Awards (4):
  • 2020/02 - Hokkaido University President's Award
  • 2016/02 - Inoue Foundation for Science 32nd Inoue Research Award for Young Scientists
  • 2014/02 - Japan Society for the Promotion of Science 4th Ikushi Prize Crystal Growth Phenomena and Hamilton-Jacobi Equations
  • 2013/09 - Mathematical Society of Japan Takebe Katahiro Prize for Encouragement of Young Researchers Mathematical analysis for Hamilton-Jacobi equations and its application to crystal growth phenomena
Association Membership(s) (1):
THE MATHEMATICAL SOCIETY OF JAPAN
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page