Art
J-GLOBAL ID:201502223151991600
Reference number:15A0216194
CSJを用いた日本語講演音声認識へのDNN-HMMの適用と話者適応の検討
Author (2):
,
Material:
Volume:
2013
Issue:
SLP-97
Page:
WEB ONLY VOL.2013-SLP-97,NO.9
Publication year:
Jul. 18, 2013
JST Material Number:
U0451A
Document type:
Proceedings
Article type:
原著論文
Country of issue:
Japan (JPN)
Language:
JAPANESE (JA)
Thesaurus term:
Thesaurus term/Semi thesaurus term
Keywords indexed to the article.
All keywords is available on JDreamIII(charged).
On J-GLOBAL, this item will be available after more than half a year after the record posted. In addtion, medical articles require to login to MyJ-GLOBAL.
,
,
,
,
,
,
,
,
,
,
,
,
Semi thesaurus term:
Thesaurus term/Semi thesaurus term
Keywords indexed to the article.
All keywords is available on JDreamIII(charged).
On J-GLOBAL, this item will be available after more than half a year after the record posted. In addtion, medical articles require to login to MyJ-GLOBAL.
,
,
,
JST classification (3):
JST classification
Category name(code) classified by JST.
Pattern recognition
, System and control theory in general
, Information processing in general
Reference (17):
-
G.E.Hinton, S.Osindero and Y.Teh: A fast learning algorithm for deep belief nets, Neural Computation, Vol. 18, pp. 1527-1554 (2006).
-
G.E.Hinton, L.Deng, D.Yu, G.Dahl, A.Mohamed, N.Jaitly, A.Senior, V.Vanhoucke, P.Nguyen, T.Sainath and B.Kingsbury: Deep neural networks for acoustic modeling in speech recognition, IEEE Signal Processing Magazine, Vol. 29, No. 6, pp. 82-97 (2012).
-
A.Mohamed, G.Dahl and G.Hinton: Acoustic modelling using deep belief networks, IEEE Trans. Audio, Speech, & Language Proc., Vol. 20, No. 1, pp. 14-22 (2012).
-
G.E.Dahl, D.Yu, L.Deng and A.Acero: Context-dependent pre-trained deep neural networks for large vocabulary speech recognition, IEEE Trans. Audio, Speech, & Language Proc., Vol. 20, No. 1, pp. 30-42 (2012).
-
F.Seide, G.Li and D.Yu: Conversational speech transcription using context-dependent deep neural networks, Proc. Interspeech, pp. 437-440 (2011).
more...
Terms in the title (5):
Terms in the title
Keywords automatically extracted from the title.
,
,
,
,
Return to Previous Page