Rchr
J-GLOBAL ID:201701011735538562   Update date: Sep. 01, 2024

Takasao Keisuke

Takasao Keisuke
Affiliation and department:
Research field  (1): Mathematical analysis
Research keywords  (1): Partial differential equation, Mean curvature flow, calculus of variations, phase field method
Research theme for competitive and other funds  (8):
  • 2024 - 2028 Mathematical analysis on interface motions allowing collision, rupture and coalasce
  • 2023 - 2028 Canonical mean curvature flow and its application to evolution problems
  • 2023 - 2027 Measure theoretic properties of phase field models for surface evolution equations
  • 2020 - 2023 Construction of new phase field methods for dynamical problems in the calculus of variations
  • 2018 - 2023 Multifaceted studies on dynamical problems in the calculus of variations using geometric measure theory
Show all
Papers (16):
  • Keisuke Takasao. The Existence of a Weak Solution to Volume Preserving Mean Curvature Flow in Higher Dimensions. Archive for Rational Mechanics and Analysis. 2023. 247. 3
  • Takashi Kagaya, Masashi Mizuno, Keisuke Takasao. Long time behavior for a curvature flow of networks related to grain boundary motion with the effect of lattice misoriantations. ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. 2023. 59-59
  • Masashi Mizuno, Keisuke Takasao. A curve shortening equation with time-dependent mobility related to grain boundary motions. Interfaces and Free Boundaries. 2021. 23. 2. 169-190
  • Keisuke Takasao. On Obstacle Problem for Brakke's Mean Curvature Flow. SIAM Journal on Mathematical Analysis. 2021. 53. 6. 6355-6369
  • Yoshikazu Giga, Fumihiko Onoue, Keisuke Takasao. A varifold formulation of mean curvature flow with Dirichlet or dynamic boundary conditions. Differential Integral Equations. 2021. 34. 1--2. 21-16
more...
Lectures and oral presentations  (44):
  • On obstacle problem for Brakke's mean curvature flow with Neumann boundary condition
    (2024)
  • Phase field method for mean curvature flow with obstacles
    (2024)
  • Phase field method for Brakke’s mean curvature flow with obstacles
    (2024)
  • Brakkeの平均曲率流の障害物問題
    (室蘭工業大学応用解析セミナー 2024)
  • Existence of weak solution to volume preserving mean curvature flow
    (2023)
more...
Work history (2):
  • 2022/10 - 現在 京都大学大学院理学研究科 准教授
  • 2017/10 - 2022/09 京都大学大学院理学研究科/白眉センター 特定准教授
Awards (1):
  • 2019/09 - 一般社団法人日本数学会 建部賢弘特別賞 体積保存平均曲率流の弱解の研究
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page