Rchr
J-GLOBAL ID:201801001819866311   Update date: Nov. 15, 2024

Miyanishi Yoshihisa

ミヤニシ ヨシヒサ | Miyanishi Yoshihisa
Affiliation and department:
Homepage URL  (2): http://math.shinshu-u.ac.jp/~miyanishi/http://math.shinshu-u.ac.jp/~miyanishi/indexEN.html
Research field  (1): Basic analysis
Research keywords  (4): Linear operator ,  Quantization ,  Spectrum ,  Neumann--Poincaré operator
Research theme for competitive and other funds  (5):
  • 2020 - 2024 ノイマン-ポアンカレ作用素のスペクトル解析とプラズモン共鳴現象への応用
  • 2021 - 2023 Spectral theory of Neumann--Poincare operators and its Generalization
  • 2019 - 2022 Spectral theory of Neumann--Poincare operators
  • 2019 - 2021 多成分偏微分方程式系の解析的研究
  • 2017 - 2020 ノイマン-ポアンカレ作用素のスペクトル解析とその応用
Papers (20):
  • S. Fukushima, H. Kang, Y. Miyanishi. Decay rate of the eigenvalues of the Neumann-Poincare operator. Potential Analysis. 2023. To appear
  • Yoshihisa Miyanishi. A short note on decay rates of odd partitions: An application of spectral asymptotics of the Neumann-Poincare operators. Archiv der Mathematik. 2023. 121. 419-424
  • Shota Fukushima, Yonggwan Ji, Hyeonbae Kang, Yoshihisa Miyanishi. Spectral properties of the Neumann-Poincare operator and cloaking by anomalous localized resonance: a review. The Journal of the Korean Society for Industrial and Applied Mathematics. 2023. 27. 2. 87-108
  • Kazunori Ando, Hyeonbae Kang, Sanghyuk Lee, Yoshihisa Miyanishi. Spectral structure of the Neumann-Poincare operator on thin ellipsoids and flat domains. SIAM Journal on Mathematical Analysis. 2022. 54. 6
  • Yoshihisa Miyanishi. Weyl’s law for the eigenvalues of the Neumann-Poincare operators in three dimensions: Willmore energy and surface geometry. Advances in Mathematics. 2022. 406
more...
MISC (9):
  • Yoshihisa Miyanishi. The spectral theory of the Neumann-Poincare operator on convex domains. RIMS Kokyuroku. 2022. 2235. 118-123
  • Yoshihisa Miyanishi. Notes on spectral clusters for semiclassical Schr}odinger operators. RIMS Kokyuroku. 2016. 2023. 29-34
  • Yoshihisa Miyanishi. A remark on Laplace Eigenfunctions on M3A. 2006. 89. 135-138
  • Yoshihisa Miyanishi. A remark on the equi-distribution of generalized eigenfunctions. 2005. 104. 61-68
  • Miyanishi Yoshihisa. A REMARK ON THE NON-SCARRING OF $-\triangle u_j=\lambda_j u_{j \cdot}$ (Microlocal Analysis of the Schrodinger Equation and Related Topics). RIMS Kokyuroku. 2000. 1176. 18-25
more...
Books (2):
  • データサイエンスリテラシー : モデルカリキュラム準拠
    培風館 2021 ISBN:9784563016135
  • 解析入門-例を中心として
    学術図書出版社 2006 ISBN:4873618347
Lectures and oral presentations  (77):
  • A short note on decay rates of odd partitions: an application of spectral asymptotics of the Neumann-Poincare operators
    (Inha University seminar 2024)
  • Circle Foliations Revisited: Periods of Flows whose Orbits are all Closed
    (2024 Operator Symposium (Shinshu) 2024)
  • Decay rate of the eigenvalues of the Neumann-Poincare operator
    (2024)
  • A short note on decay rates of odd partitions: an application of spectral asymptotics of the Neumann-Poincare operators
    (The 20th Linear and Nonlinear Waves 2023)
  • Spectral Theory of Layer Potential Type Operators
    (The 66th complex analysis symposium 2023)
more...
Work history (12):
  • 2022/04 - 現在 The Open University of Japan Visiting Associate Professor
  • 2021/04 - 現在 Shinshu University Department of Mathematical Sciences, Faculty of Science Associate Professor
  • 2020/11 - 2021/03 The Open University of Japan
  • 2020/08 - 2021/03 Center for Research and Development Strategy
  • 2020/04 - 2021/03 Osaka University Center for Mathematical Modeling and Data Science specially appointed lecturer
Show all
Committee career (1):
  • 2021/08 - 2023/08 ICIAM ICIAM2023 Local Scientific Program Committee
Association Membership(s) (5):
THE MATHEMATICAL SOCIETY OF JAPAN ,  Mathematical Association of America ,  Inverse Problems International Association (IPIA) ,  Society for Industrial and Applied Mathematics ,  American Mathematical Society
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page