Rchr
J-GLOBAL ID:201801002748151991   Update date: Oct. 31, 2024

Minowa Yasushi

ミノワ ヤスシ | Minowa Yasushi
Affiliation and department:
Job title: Professor
Homepage URL  (1): http://uf.kpu.ac.jp/minowa/
Research field  (1): Forest science
Research theme for competitive and other funds  (2):
  • 2012 - 2015 Systematization of forest management methods based on the information of individual trees
  • 2011 - 2015 Development of large area forest resources sumulation system using time series 3D remote sensing
Papers (35):
  • Yasushi Minowa, Koharu Shigematsu, Hikaru Takahara. A Deep Learning-Based Model for Tree Species Identification Using Pollen Grain Images. Applied Sciences. 2022. 12. 24. 12626-12626
  • Yasushi Minowa, Shun Nakatsukasa. Identification of coniferous tree species using deep learning. Journal of Forest Planning. 2022. 56. 1
  • Yasushi Minowa, Yuhsuke Kubota, Shun Nakatsukasa. Verification of a Deep Learning-Based Tree Species Identification Model Using Images of Broadleaf and Coniferous Tree Leaves. Forests. 2022. 13. 6. 943-943
  • Yasushi Minowa, Tsukumo Nakanishi. Relationship between sample size and classification accuracy for tree species identification based on leaf shape. Journal of Forest Planning. 2022. 55. 2. 61-75
  • Yasushi Minowa, Yuhsuke Kubota. Identification of broad-leaf trees using deep learning based on field photographs of multiple leaves. Journal of Forest Research. 2022. 1-9
more...
MISC (10):
  • Mukai Hanano, Minowa Yasushi, Nagashima Keiko. Estimating site index of Japanese cypress forest using machine learning. The Japanese Forest Society Congress. 2022. 133. 264
  • Kakihara Nene, Minowa Yasushi, Nagashima Keiko. Model construction for estimating risk of driftwood by topographical factors. The Japanese Forest Society Congress. 2022. 133. 525
  • Shiota Hiromi, Tanaka Kazuhiro, Nagashima Keiko, Minowa Yasushi. Estimating wood volume by road network buffer using ALS data and tile polygons. The Japanese Forest Society Congress. 2021. 132. 316
  • Shiota Hiromi, Tanaka Kazuhiro, Nagashima Keiko, Minowa Yasushi. Analysis and Estimation of average tree height by ecotope from ALS. The Japanese Forest Society Congress. 2018. 129. 79
  • Shiota Hiromi, Tanaka Kazuhiro, Nagashima Keiko, Minowa Yasushi, Yoshida Satoshi, Okada Hiroyuki, Suzuki Hideaki. Estimation of site quality index by utilizing the data of ALS (Airborne Laser Scan). The Japanese Forest Society Congress. 2017. 128. 55
more...
Books (4):
  • 森林計画学入門
    2020 ISBN:425447055X
  • 「森林計画・計測における 統計理論の応用に係わる若手研究集会」資料集
    森林計画学会出版局 2015
  • アジアにおける森林の消失と保全
    中央法規 2003
  • Sustainable Forest Management and Forest Certification in Malaysia.A Step toward Forest Conservation Strategy (2) Research on desirable forest management system
    The Institute for Global Environment Strategies (IGES) 2000
Professional career (1):
  • Ph.D(Agric.) (The University of Tokyo)
Committee career (5):
  • 2014 - 現在 日本森林学会 Journal of Forest Research 編集委員
  • 2014 - 2016 森林計画学会 和文誌編集委員
  • 2014 - 2016 森林計画学会 事務局長
  • 2013 - 2015 応用森林学会 森林応用研究 編集委員長
  • 2006 - 2007 応用森林学会 森林応用研究 編集委員
Awards (3):
  • 2023/03 - The Japanese Forest Society Best Paper Award, Journal of the Japanese Forest Society Estimation of the tree height and volume based on the produced hammering sound using deep learning
  • 2012/03 - Japan Society of Forest Planning Award of Japan Society of Forest Planning Verification for generalizability and accuracy of a thinning-trees selection model with the ensemble learning algorithm and the cross-validation method
  • 2008/03 - The Japanese Society of Forest Environment The Japanese Society of Forest Environment Paper Award Range expansion of Castanopsis forests during the last 70 years in the Higashiyama hill area, Kyoto
Association Membership(s) (6):
THE JAPANESE AGRICULTURAL SYSTEMS SOCIETY ,  JAPAN SOCIETY FOR FUZZY THEORY AND INTELLIGENT INFORMATICS ,  THE OPERATIONS RESEARCH SOCIETY OF JAPAN ,  THE SOCIETY OF APPLIED FOREST SCIENCE ,  JAPAN SOCIETY OF FOREST PLANNING ,  THE JAPANESE FOREST SOCIETY
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page