Rchr
J-GLOBAL ID:201801009957224283   Update date: Feb. 01, 2024

Kitano Teruaki

キタノ テルアキ | Kitano Teruaki
Affiliation and department:
Job title: Professor
Research field  (1): Geometry
Research keywords  (6): 3次元多様体論 ,  位相幾何学 ,  数学 ,  3-dimensional manifolds ,  Topology ,  Mathematics
Research theme for competitive and other funds  (15):
  • 2019 - 2023 3次元多様体の基本群の指標多様体と位相的構造との関連について
  • 2016 - 2020 Reidemeister torsionに関するJohnson理論の深化
  • 2015 - 2019 Torsion invariants for hyperbolic manifolds
  • 2013 - 2017 Pro-finite completion of a 3-manifold group and its relation to topological invariants
  • 2012 - 2013 表現の理論に関連した側面からみた低次元トポロジーと3次元位相不変量
Show all
Papers (26):
  • Teruaki Kitano, Yuta Nozaki. An algebraic property of Reidemeister torsion. Transactions of the London Mathematical Society. 2022. 9. 1. 136-157
  • Teruaki Kitano, Takayuki Morifuji, Anh T. Tran. Twisted Alexander polynomials of torus links. Journal of Knot Theory and its Ramifications. 2020. 29. 4
  • Teruaki Kitano, Yuta Nozaki. Finiteness of the image of the reidemeister torsion of a splice. Annales Mathematiques Blaise Pascal. 2020. 27. 1. 19-36
  • Teruaki Kitano. A polynomial defined by the SL(2; C)-Reidemeister torsion for a homology 3-sphere obtained by a Dehn surgery along a {p, q)-torus knot. Tohoku Mathematical Journal. 2017. 69. 4. 571-583
  • Kitano, Teruaki, Morifuji, Takayuki. A note on Riley polynomials of 2-bridge knots. Ann. Fac. Sci. Toulouse Math. (6). 2017. 26. 5. 1211-1217
more...
Books (3):
  • 数学の言葉と論理
    朝倉書店 2008 ISBN:9784254117516
  • Groups of Diffeomorphisms
    Mathematical society of Japan 2008
  • ねじれ Alexander 不変量
    日本数学会 2006 ISBN:4931469361
Lectures and oral presentations  (6):
  • SL(2,Z/d)-represenations of a knot group and Alexander polynomial as an obstruction
    (The 8th East Asian School of Knots and Related Topics 2012)
  • Linear representations over a finite field of a knot group and the Alexander polynomial as an obstruction
    (Branched Coverings, Degenerations, and Related Topics 2012 2012)
  • Epimorphisms between knot groups and special values of colored Jones polynomials
    (The 8th East Asian School of Knots and Related Topics 2012)
  • On the Alexander polynomial of a knot as an obstruction for linear representations of a knot group
    (Circle valued Morse theory and Alexander invariants 2011)
  • Linear representations over a finite field of a knot group and the Alexander polynomial as an obstruction
    (北京大学topology seminar 2011)
more...
Education (4):
  • - 1994 Tokyo Institute of Technology Science of Engineering
  • - 1994 Tokyo Institute of Technology Graduate School, Division of Science and Engineering Mathematics
  • - 1988 Chuo University Faculty of Science and Engineering
  • - 1988 Chuo University Faculty of Science and Engineering Mathematics
Professional career (1):
  • Doctor of science (Tokyo Institute of Technology)
Association Membership(s) (1):
Mathematical society of Japan
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page