Rchr
J-GLOBAL ID:201801015406549700   Update date: Nov. 20, 2024

Miyamoto Takashi

ミヤモト タカシ | Miyamoto Takashi
Affiliation and department:
Homepage URL  (1): http://www.ccn.yamanashi.ac.jp/~tmiyamoto/
Research field  (3): Mathematical informatics ,  Disaster prevention engineering ,  Structural and seismic engineering
Research keywords  (3): applied mechanics ,  data science ,  earthquake engineering
Research theme for competitive and other funds  (11):
  • 2021 - 2024 A New AI Method for Bridge Inspection and Diagnosis that Combines CNN with Highly Accurate Damage Detection and Expertises
  • 2019 - 2024 スパースな地震観測網による地盤-構造物系の地震時挙動の高精度予測手法の開発
  • 2019 - 2023 Development of a heavy rainfall prediction method combining numerical weather prediction models and deep learning methods
  • 2018 - 2022 様々な情報源から得られるヘテロデータのマルチモーダル学習による地震被害分布の推定
  • 2019 - 2021 衛星リモートセンシングから得られる時空間ビッグデータの機械学習による地震被害の判別
Show all
Papers (34):
  • Shitao Zheng, Takashi Miyamoto, Koyuru Iwanami, Shingo Shimizu, Ryohei Kato. Hybrid Scheme of Kinematic Analysis and Lagrangian Koopman Operator Analysis for Short-Term Precipitation Forecasting. Journal of Disaster Research. 2022. 17. 7. 1140-1149
  • Hidetaka Saomoto, Takashi Miyamoto. GENERATING MACHINE LEARNING DATASETS ON DAMAGE IDENTIFICATION USING FINITE ELEMENT BRIDGE MODEL. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering (SE/EE)). 2022. 78. 4. I_10-I_21
  • Takashi Miyamoto, Yudai Yamamoto. Using 3D Convolution and Multimodal Architecture For Earthquake Damage Detection Based on Satellite Imagery and Digital Urban Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2021. 1-1
  • Takashi Miyamoto, Yudai Yamamoto. Using Multimodal Learning Model for Earthquake Damage Detection Based on Optical Satellite Imagery and Structural Attributes. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. 2020. 6623-6626
  • CHUN Pang-Jo, DANG Ji, 佐野泰如, 杉崎光一, 宮本崇, 阿部雅人, 清水隆史. AIを活用した鋼構造物の腐食損傷の点検・診断の現状及び展望. 防錆管理. 2020. 64. 6. 193-200
more...
MISC (34):
more...
Education (4):
  • 2009 - 2012 The University of Tokyo Graduate School of Engineering Doctoral Course, Department of Civil Engineering
  • 2007 - 2009 The University of Tokyo Graduate School of Engineering Master Course, Department of Civil Engineering
  • 2005 - 2007 The University of Tokyo Faculty of Engineering Department of Civil Engineering
  • 2003 - 2005 The University of Tokyo College of Liberal Arts and Sciences Junior Division Natural Sciences I
Professional career (1):
  • 博士(工学) (東京大学)
Work history (4):
  • 2021/04 - 現在 German Research Center for Artificial Intelligence Visiting Scholar
  • 2020/02 - 現在 University of Yamanashi Faculty of Engineering Department of Civil and Environmental Engineering Associate Professor
  • 2012/07 - 2020/01 University of Yamanashi Department of Civil & Environmental Engineering assistant professor
  • 2012/04 - 2012/06 University of Illinois Urbana Champaign visiting researcher
Awards (5):
  • 2020/12 - 土木学会構造工学委員会 構造工学でのAI活用に関する研究小委員会 AI・データサイエンス論文賞 パターン認識と法則発見のデータサイエンス
  • 2020/10 - Japan Society of Civil Engineering Presentation Award on 2020 JSCE Applied Mechanics Symposium
  • 2017/08 - Best Presentation Award, IMEC2017
  • 2014/10 - Outstanding Paper Award, Built Environment Project and Asset Management
  • 2010/08 - Applied Mechanics Committee, Japan Society of Civil Engineering Best Paper Award from JSCE Applied Mechanics Committee
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page