Rchr
J-GLOBAL ID:201801015726396383   Update date: Apr. 12, 2021

Shiga Hironori

Shiga Hironori
Affiliation and department:
Research field  (1): Algebra
Research keywords  (3): hypergeometric differential equations ,  modular functions ,  K3 surfaces
Research theme for competitive and other funds  (10):
  • 2019 - 2022 K3 modular functions and period hypergeometric differential equations
  • 2015 - 2018 超幾何系由来の K3 保型形式の研究とその数論への応用
  • 2011 - 2014 カラビ・ヤウ曲面族の数論的側面と超幾何系
  • 2008 - 2011 多変数保型形式と多変数超幾何函数に内在する数論的関係
  • 2005 - 2008 超幾何微分方程式とそのシュワルツ関数に関する数論的研究
Show all
Papers (16):
more...
MISC (15):
  • 志賀弘典. 途上国での数学講義/ パキスタンとルワンダでの滞在を回顧しつつ. 数学セミナー. 2021. 60. 4. 50-54
  • Hironori Shiga. Introduction to Modular forms. Mathematical Sciences. 2021. 59. 2. 15-23
  • On Kummer-like surfaces attached to singularity and modular forms. arXiv:2012.11954. 2020. 1-21
  • Geometric interpretation of Hermitian modular forms via Burkhardt invariants. arXiv:2004.08081. 2020. 1-18
  • Hironori Shiga. Lectures on algebraic crves. Lectures at Tribhuvan university. 2017
more...
Books (6):
  • 数学の視界 改訂版
    数学書房 2018
  • 保型関数
    共立出版 2017
  • プリンストン数学大全
    朝倉書店 2015
  • 15週で学ぶ複素関数論 改訂版
    数学書房 2011
  • 数学語圏
    数学書房 2009
more...
Lectures and oral presentations  (10):
  • An explicit expression of the ring of modular forms induced from simple K3 singularities
    (Seminar on singularities 2020)
  • Report on the education of advanced mathematical sciencesat AIMS (African institute for matematical sciences)
    (interdisciplinary Theoretical and Mathematical Science Programs 2019)
  • K3 modular functions and GKZ equations, alla Mandala
    (Mini-Conference on special functions, algebra and geometry 2019)
  • Deformations of a simple K3 singularity and GKZ hypergeometric systems
    (workshop on accessory parameters 2019)
  • Hypergeometric Modular functions and the Shimura canonical model with applications
    (Hypergeometric Measures and Multiple Zeta Values 2018)
more...
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page