Rchr
J-GLOBAL ID:201801019366573543   Update date: Sep. 26, 2024

Fukasawa Satoru

フカサワ サトル | Fukasawa Satoru
Affiliation and department:
Homepage URL  (1): https://sites.google.com/sci.kj.yamagata-u.ac.jp/fukasawa-lab
Research field  (1): Algebra
Research keywords  (4): ガロア点 ,  代数曲線 ,  正標数 ,  代数幾何
Research theme for competitive and other funds  (7):
  • 2022 - 2026 ガロア点理論とそれを核とした分野横断研究
  • 2019 - 2023 ガロア点を用いた射影多様体の分類理論と新展開
  • 2016 - 2019 ガロア点を用いた射影多様体の分類理論と新展開
  • 2013 - 2016 ガロア点を用いた射影多様体の分類理論と新展開
  • 2010 - 2013 ガロア点を用いた射影多様体の分類理論と新展開
Show all
Papers (46):
  • Satoru Fukasawa. A new characterisation of the Fermat curve. Annali di Matematica Pura ed Applicata (1923 -). 2024. 203. 2. 635-646
  • Satoru Fukasawa. Galois points and rational functions with small value sets. Hiroshima Mathematical Journal. 2024. 54. 1. 37-43
  • Satoru Fukasawa. Algebraic curves admitting non-collinear Galois points. Rendiconti del Seminario Matematico della Università di Padova. 2023. 149. 183-190
  • Satoru Fukasawa. New examples of tangentially degenerate curves. Rendiconti Lincei - Matematica e Applicazioni. 2023. 33. 4. 959-966
  • Herivelto Borges, Satoru Fukasawa. An elementary abelian p-cover of the Hermitian curve with many automorphisms. MATHEMATISCHE ZEITSCHRIFT. 2022. 302. 2. 695-706
more...
MISC (7):
  • Satoru Fukasawa, Tsuyoshi Miezaki. Galois points for a finite graph. 2023
  • Satoru Fukasawa, Kei Miura, Takeshi Takahashi. Quasi-Galois points, II: Arrangements. 2022
  • Satoru Fukasawa, Katsushi Waki. Examples of plane rational curves with two Galois points in positive characteristic, II. 2021
  • Satoru Fukasawa, Pietro Speziali. Plane curves possessing two outer Galois points. 2018
  • Satoru Fukasawa. On the number of Galois points for a plane curve in characteristic zero. 2016
more...
Lectures and oral presentations  (18):
  • ガロア点理論とそれの群論, グラフ理論との関係
    (第69回 代数学シンポジウム 2024)
  • グラフのガロア点について
    (日本数学会年会応用数学分科会 2024)
  • New examples of tangentially degenerate curves
    (晴ればれ岡山 代数幾何学シンポジウム 2024)
  • グラフのガロア点について
    (有限群論, 代数的組合せ論, 頂点代数の研究 2023)
  • グラフのガロア点について
    (愛媛大学代数セミナー 2023)
more...
Professional career (1):
  • 博士(理学) (広島大学)
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page