Art
J-GLOBAL ID:201802211191614212   Reference number:18A0610906

A numerical method of estimating blow-up rates for nonlinear evolution equations by using rescaling algorithm

再スケールアルゴリズムを用いて非線形発展方程式に対する爆発率を推定する数値法
Author (3):
Material:
Volume: 35  Issue:Page: 33-47  Publication year: 2018 
JST Material Number: L5671A  ISSN: 0916-7005  Document type: Article
Article type: 原著論文  Country of issue: Germany, Federal Republic of (DEU)  Language: ENGLISH (EN)
Thesaurus term:
Thesaurus term/Semi thesaurus term
Keywords indexed to the article.
All keywords is available on JDreamIII(charged).
On J-GLOBAL, this item will be available after more than half a year after the record posted. In addtion, medical articles require to login to MyJ-GLOBAL.

Semi thesaurus term:
Thesaurus term/Semi thesaurus term
Keywords indexed to the article.
All keywords is available on JDreamIII(charged).
On J-GLOBAL, this item will be available after more than half a year after the record posted. In addtion, medical articles require to login to MyJ-GLOBAL.

JST classification (2):
JST classification
Category name(code) classified by JST.
Mathematical physics  ,  Numerical computation 
Reference (19):
  • Anada, K., Ishiwata, T.: Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation. J. Differ. Equ. 262, 181-271 (2017)
  • Andrews, B.: Singularities in crystalline curvature flows. Asian J. Math. 6(1), 101-122 (2002)
  • Berger, M., Kohn, R.V.: A rescaling algorithm for the numerical calculation of blowing-up solutions. Commun. Pure Appl. Math. 41, 841-863 (1988)
  • Budd, C.J., Huang, W.-Z., Russell, R.D.: Moving mesh methods for problems with blow-up. SIAM J. Sci. Comput. 17, 305-327 (1996)
  • Chen, Y.G.: Asymptotic behaviors of blowing-up solutions for finite difference analogue of ut=uxx+u1+α. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33, 541-574 (1986)
more...

Return to Previous Page