Rchr
J-GLOBAL ID:201901010870793767   Update date: Sep. 15, 2021

Miyamoto Keng

ミヤモト ケンゴ | Miyamoto Keng
Affiliation and department:
Job title: Assistant Professor
Research field  (2): Information security ,  Algebra
Research keywords  (7): card-based cryptography ,  Heller lattice ,  tau-tilting finite ,  表現論 ,  Auslander-Reiten theory ,  Representation theory of orders ,  Representation theory of algebras
Research theme for competitive and other funds  (3):
  • 2020 - 2024 整環上の格子圏におけるAuslander-Reiten理論の研究
  • 2019 - 2020 有限次元対称多元環における\tau傾理論による組み合わせ的構造の研究
  • 2018 - 2019 完備離散付値環上の格子におけるAuslander-Reiten理論の研究
Papers (8):
  • Takuma Aihara, Takahiro Honma, Kengo Miyamoto, Qi Wang. Report on the finiteness of silting objects. Proceedings of the Edinburgh Mathematical Society. 2021. 64. 2. 217-233
  • S. Ariki, R. Kase, K. Miyamoto, K. Wada. Correction to: Self-injective Cellular Algebras Whose Representation Type are Tame of Polynomial Growth. Algebras and Representation Theory. 2020. 23. 873-874
  • S. Ariki, R. Kase, K. Miyamoto, K. Wada. Self-injective Cellular Algebras Whose Representation Type are Tame of Polynomial Growth. Algebras and Representation Theory. 2020. 23. 3. 833-871
  • Kengo Miyamoto. On the non-periodic stable Auslander-Reiten Heller component for the Kronecker algebra over a complete discrete valuation ring. Osaka Journal of Mathematics. 2019. 56. 3. 459-496
  • Kengo Miyamoto. Components of the stable Auslander-Reiten quiver for a symmetric order over a complete discrete valuation ring. Proceedings of the Edinburgh Mathematical Society. 2019. 82-91
more...
MISC (7):
  • Kengo Miyamoto, Kazumasa Shinagawa. Graph automorphism shuffles from pile-scramble shuffles. 2021
  • Kengo Miyamoto, Qi Wang. On τ-tilting finiteness of tensor products between simply connected algebras. arXiv:2106.06423. 2021
  • 宮本 賢伍. Classification of self-injective cellular algebras of polynomial growth. 第4回 Algebraic Lie Theory and Representation Theory報告集. 2019. 193-204
  • Kengo Miyamoto. On periodic stable Auslander-Reiten components containing Heller lattices over the symmetric Kronecker algebra. 2018
  • 宮本 賢伍. Self-injective cellular algebras of polynomial growth representation type. 数理解析研究所講究録. 2018. 2077. 40-51
more...
Lectures and oral presentations  (22):
  • On $\tau$-tilting finite tensor product algebras between simply connected algebras
    (53th Symposium on Ring and Representation theory 2021)
  • Components of the stable Auslander-Reiten quiver for a symmetric order over a complete discrete valuation ring
    (産学連携フォーラム 2019 2019)
  • Tubular型の自己移入型代数のτ傾有限性について
    (産学連携フォーラム 2019 2019)
  • Components of the stable Auslander-Reiten quiver for a symmetric order over a complete discrete valuation ring
    (2019年度 日本数学会秋季総合分科会 2019)
  • Components of the stable Auslander-Reiten quiver for a symmetric order over a complete discrete valuation ring
    (第24回 代数学若手研究会 2019)
more...
Education (3):
  • 2016 - 2019 大阪大学大学院 情報基礎数学専攻 博士後期課程
  • 2014 - 2016 大阪大学大学院 情報基礎数学専攻 博士前期課程
  • 2010 - 2014 Kansai University Department of Mathematics
Professional career (1):
  • 博士(理学) (大阪大学)
Work history (5):
  • 2021/04 - 現在 Ibaraki University Graduate School of Science and Engineering Assistant Professor
  • 2019/04 - 2021/03 National Institute of Technology, Yuge College General Education
  • 2018/04 - 2019/03 日本学術振興会 特別研究員 DC2 (大阪大学)
  • 2016/04 - 2017/03 大阪府立 西野田工科高校 非常勤講師
  • 2014/04 - 2016/03 大阪府立 港高等学校 非常勤講師
Committee career (1):
  • 2019/04 - 2021/03 弓削商船高等専門学校 寮務主事補
Association Membership(s) (1):
THE MATHEMATICAL SOCIETY OF JAPAN
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page