Rchr
J-GLOBAL ID:201901019118008543
Update date: Sep. 09, 2024
Watanabe Hideya
ワタナベ ヒデヤ | Watanabe Hideya
Affiliation and department:
Job title:
assistant professor
Homepage URL (2):
https://hideya1.github.io/MyPage/html/home_ja.html
,
https://hideya1.github.io/MyPage/html/home_en.html
Research field (1):
Algebra
Research keywords (9):
representation theory
, Lie algebra
, quantum group
, quantum symmetric pair
, iquantum group
, crystal basis
, icrystal base
, Hecke algebra
, integrable systems
Research theme for competitive and other funds (5):
- 2024 - 2029 A new innovation in the representation theory of quantum symmetric pairs: an approach through the cell structure of the canonical basis
- 2023 - 2024 Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
- 2020 - 2024 Weight modules and crystal bases for quantum symmetric pairs
- 2021 - 2023 量子対称部分代数の表現論に現れる組合せ構造とその応用
- 2017 - 2019 An approach to the Kazhdan-Lusztig polynomials via the representation theory of quantum symmetric pairs
Papers (13):
-
Hiroto Kusano, Masato Okado, Hideya Watanabe. Kirillov-Reshetikhin Modules and Quantum K-matrices. Communications in Mathematical Physics. 2024
-
Hideya Watanabe. A new tableau model for representations of the special orthogonal group. Journal of Algebraic Combinatorics. 2023. 58. 1. 183-230
-
Hideya Watanabe. Crystal bases of modified $\imath$quantum groups of certain quasi-split types. Algebras and Representation Theory. 2023
-
Hideya Watanabe. Stability of $\imath$canonical bases of irreducible finite type of real rank one. Representation Theory of the American Mathematical Society. 2023. 27. 1. 1-29
-
Hideya Watanabe. Based modules over the $$\imath $$quantum group of type AI. Mathematische Zeitschrift. 2023. 303. 2
more...
MISC (4):
-
Hideya Watanabe. Integrable modules over quantum symmetric pair coideal subalgebras. 2024
-
Hideya Watanabe. Symplectic tableaux and quantum symmetric pairs. 2023
-
Hideya Watanabe. Stability of $\imath$canonical bases of locally finite type. 2023
-
渡邉 英也. 周期的 $R$-多項式の組合せ論的明示公式 (組合せ論的表現論とその周辺). 数理解析研究所講究録. 2016. 1992. 91-99
Lectures and oral presentations (42):
-
量子対称対余イデアル部分代数の可積分表現
(日本数学会2024年度秋季総合分科会 2024)
-
Combinatorial representation theory of quantum symmetric pairs
(Japanese Conference on Combinatorics and its Applications 2024 2024)
-
Some non-Levi branching rules arising from quantum symmetric pairs
(Combinatorial Representation Theory and Geometry 2024)
-
Combinatorial $K$-matrices arising from affine quantum symmetric pairs of type $A$
(Combinatorics And Representation Theory Seminar 2024)
-
A branching rule from the general linear groups to the symplectic groups, and quantum symmetric pairs
(Tokyo Tech Representation Theory Seminar 2024)
more...
Education (4):
- 2016 - 2019 Tokyo Institute of Technology School of Science
- 2014 - 2016 Tokyo Institute of Technology Science of Engineering Mathematics
- 2012 - 2014 The University of Tokyo Faculty of Science Department of Mathematics
- 2010 - 2012 The University of Tokyo College of Arts and Sciences
Professional career (1):
Work history (6):
Association Membership(s) (1):
THE MATHEMATICAL SOCIETY OF JAPAN
Return to Previous Page