Rchr
J-GLOBAL ID:202001006959110659   Update date: Jun. 12, 2020

NAKAI Kengo

NAKAI Kengo
Affiliation and department:
Job title: 助教
Homepage URL  (1): http://www2.kaiyodai.ac.jp/~knakai0/
Research field  (1): Mathematical analysis
Research keywords  (3): 機械学習 ,  流体力学 ,  リザーバーコンピューティング
Research theme for competitive and other funds  (1):
  • 2019 - 2021 流体運動におけるエネルギーの流れの考察
Papers (3):
  • Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS SERIES S. 2020
  • Kengo NAKAI. Direction of Vorticity and a Refined Regularity Criterion for the Navier-Stokes Equations with Fractional Laplacian. Journal of Mathematical Fluid Mechanics. 2019. 21. 21
  • Kengo Nakai, Yoshitaka Saiki. Machine-learning inference of fluid variables from data using reservoir computing. Physical Review E. 2018. 98. 023111. 1-6
Education (1):
  • 2017 - 2020 The University of Tokyo
Professional career (1):
  • 博士(数理科学) (東京大学)
Work history (2):
  • 2020/04 - 現在 Tokyo University of Marine Science and Technology
  • 2019/04 - 2020/03 Japan Society for the Promotion of Science
Association Membership(s) (2):
The Mathematical Society of Japan ,  日本流体力学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page