Rchr
J-GLOBAL ID:202001009963525960   Update date: Jun. 09, 2024

Nakayama Yugo

ナカヤマ ユウゴ | Nakayama Yugo
Affiliation and department:
Research field  (1): Statistical science
Research keywords  (3): 機械学習 ,  高次元統計解析 ,  多変量解析
Research theme for competitive and other funds  (4):
  • 2021 - 2026 Mathematical Principles of Deep Learning: Clarifying the Interface with High-Dimensional Statistical Analysis
  • 2020 - 2025 Innovative Developments of Theories and Methodologies for Large Complex Data
  • 2020 - 2022 High-dimension, low-sample-size asymptotic theory for nonlinear feature selection
  • 2019 - 2020 Kernel principal component analysis in high dimension, low sample size and its applications
Papers (7):
  • Yugo Nakayama, Kazuyoshi Yata, Makoto Aoshima. Test for high-dimensional outliers with principal component analysis. Japanese Journal of Statistics and Data Science. 2024
  • Yugo Nakayama, Kazuyoshi Yata, Makoto Aoshima. Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings. Journal of Multivariate Analysis. 2021. 185. 104779-104779
  • Yugo Nakayama. Robust support vector machine for high-dimensional imbalanced data. Communications in Statistics - Simulation and Computation. 2021. 50. 5. 1524-1540
  • Yugo Nakayama. Support vector machine and optimal parameter selection for high-dimensional imbalanced data. Communications in Statistics - Simulation and Computation. 2020. 51. 11. 6739-6754
  • Yugo Nakayama, Kazuyoshi Yata, Makoto Aoshima. Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings. Annals of the Institute of Statistical Mathematics. 2019. 72. 5. 1257-1286
more...
MISC (4):
  • Yugo Nakayama, Kazuyoshi Yata, Makoto Aoshima. Soft-margin SVMs in the HDLSS context. Res. Inst. Math. Sci., Kyoto University. 2019. 2124. 44-55
  • A general framework of SVM in HDLSS settings. Res. Inst. Math. Sci., Kyoto University. 2018. 2091. 14-21
  • Asymptotic properties of support vector machines in HDLSS settings. Res. Inst. Math. Sci., Kyoto University. 2017. 2047. 10-18
  • Yugo Nakayama, Kazuyoshi Yata, Makoto Aoshima. Consistency of SVM in high-dimension, low-sample-size context. Res. Inst. Math. Sci., Kyoto University. 2016. 1999. 1999. 17-27
Lectures and oral presentations  (37):
  • A simple heavy tailed cylindrical model and its applications
    (CMStatistics 2023 2023)
  • Multiple outlier detection test with PCA in high-dimension, low-sample-size settings
    (Japanese Joint Statistical Meeting 2022 2022)
  • Test for outlier detection by high-dimensional PCA
    (The 5th International Conference on Econometrics and Statistics 2022)
  • 高次元主成分スコアに基づく異常値の検出法
    (日本数学会2022年度年会 2022)
  • 高次元におけるカーネル主成分分析の漸近的性質とその応用
    (多様な高次元モデルの理論と方法論:最前線の動向 2022)
more...
Education (3):
  • 2017 - 2020 University of Tsukuba Graduate School of Pure and Applied Sciences
  • 2015 - 2017 University of Tsukuba Graduate School of Pure and Applied Sciences
  • 2011 - 2015 University of Tsukuba School of Science and Engineering, College of Mathematics
Professional career (1):
  • 博士 (筑波大学)
Work history (2):
  • 2023/04 - 現在 Nissan Motor Co., Ltd.
  • 2020/04 - 2023/03 Kyoto University Graduate School of Informatics Assistant Professor
Awards (9):
  • 2020/03 - University of Tsukuba 2020 DEAN AWARD, GRADUATE SCHOOL OF PURE AND APPLIED SCIENCES: UNIVERSITY OF TSUKUBA
  • 2019/06 - ABRAHAM WALD PRIZE in Sequential Analysis 2019
  • 2019/03 - The Japan Statistical Society OUTSTANDING POSTER PRESENTATION AWARD Clustering for high-dimensional data by kernel PCA with the Gaussian kernel
  • 2018/11 - The Mathematical Society of Japan Best Poster Presentation Award
  • 2018/03 - THE JAPAN STATISTICAL SOCIETY SPRING MEETING OUTSTANDING POSTER PRESENTATION AWARD SVM with Gaussian kernel: Bias correction and tuning parameter for high-dimensional data
Show all
Association Membership(s) (2):
日本統計学会 ,  日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page