J-GLOBAL ID:202001017554324602   Update date: Sep. 11, 2020

Nakamura Shohei

ナカムラ ショウヘイ | Nakamura Shohei
Affiliation and department:
Job title: 助教
Research field  (1): Mathematical analysis
Research keywords  (1): 関数空間論,フーリエ解析,幾何学的不等式
Research theme for competitive and other funds  (2):
  • 2020 - 2023 関数空間論的アプローチによる調和解析学の未解決問題の研究
  • 2017 - 2020 作用素の有界性を中心とした関数空間の研究と偏微分方程式への応用
Papers (15):
  • Neal Bez, Sanghyuk Lee, Shohei Nakamura. Maximal estimates for the Schrödinger equation with orthonormal initial data. Selecta Mathematica. 2020. 26. 4
  • Younghun Hong, Chulkwang Kwak, Shohei Nakamura, Changhun Yang. Finite difference scheme for two-dimensional periodic nonlinear Schrödinger equations. Journal of Evolution Equations. 2020
  • Shohei Nakamura, Yoshihiro Sawano, Hitoshi Tanaka. Weighted local Morrey spaces. Annales Academiae Scientiarum Fennicae Mathematica. 2020. 45. 1. 67-93
  • Shohei Nakamura. The orthonormal Strichartz inequality on torus. Transactions of the American Mathematical Society. 2019. 373. 2. 1455-1476
  • Loukas Grafakos, Shohei Nakamura, Hanh Van Nguyen, Yoshihiro Sawano. Conditions for boundedness into Hardy spaces. Mathematische Nachrichten. 2019. 292. 11. 2383-2410
MISC (3):
  • J. Bennett, S. Nakamura. Tomography bounds for the Fourier extension operator and applications,. 2020
  • N. Bez, S. Lee, S. Nakamura. Strichartz estimates for orthonormal families of initial data and weighted oscillatory integral estimates. 2019
  • L. Grafakos, S. Nakamura, H. V. Nguyen, Y. Sawano. Multiplier conditions for Bound- edness into Hardy spaces. 2017
Lectures and oral presentations  (19):
  • Maximal estimates for the Schrödinger equation with orthonormal initial data
    (Asia-Pacific Analysis and PDE Seminar (Online) 2020)
  • フーリエ拡張作用素に対する重み付き不等式へのX-rayトモグラフィーによるアプローチ
    (調和解析中央大セミナー 2019)
  • The pointwise convergence problem for the one dimensional Schrödinger equation describing infinitely many particles
    (Analysis seminar (University of Birmingham, UK) 2019)
  • Tomography bounds for the Fourier extension operator
    (Harmonic Analysis and Non-linear Partial Differential Equations (Kyoto University) 2019)
  • On the pointwise convergence problem to the Schr ̈odinger equation for infinitely many particles
Professional career (1):
  • 博士(理学) (首都大学東京)
Awards (1):
  • 2020/09 - 日本数学会建部奨励賞
Association Membership(s) (1):
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page