Rchr
J-GLOBAL ID:202001017554324602   Update date: Feb. 01, 2024

Nakamura Shohei

ナカムラ ショウヘイ | Nakamura Shohei
Affiliation and department:
Job title: 助教
Research field  (1): Mathematical analysis
Research keywords  (1): 関数空間論,フーリエ解析,幾何学的不等式
Research theme for competitive and other funds  (5):
  • 2021 - 2023 工学的アイデアを用いた調和解析学における未解決問題へのアプローチ
  • 2019 - 2023 New perspectives on space-time estimates for dispersive equations
  • 2020 - 2023 関数空間論的アプローチによる調和解析学の未解決問題の研究
  • 2019 - 2022 A refinement and development of mathematical analysis by means of function spaces
  • 2017 - 2020 作用素の有界性を中心とした関数空間の研究と偏微分方程式への応用
Papers (20):
  • Neal Bez, Shohei Nakamura, Hiroshi Tsuji. Stability of hypercontractivity, the logarithmic Sobolev inequality, and Talagrand's cost inequality. Journal of Functional Analysis. 2023. 285. 10. 110121-110121
  • Shinya Kinoshita, Shohei Nakamura, Akansha Sanwal. Decoupling Inequality for Paraboloid Under Shell Type Restriction and Its Application to the Periodic Zakharov System. Communications in Mathematical Physics. 2023. 404. 2. 883-926
  • Loukas Grafakos, Shohei Nakamura, Hanh Van Nguyen, Yoshihiro Sawano. Multiplier conditions for Boundedness into Hardy spaces. Annales de l'Institut Fourier. 2022. 71. 3. 1047-1064
  • Jonathan Bennett, Shohei Nakamura. Tomography bounds for the Fourier extension operator and applications. Mathematische Annalen. 2021
  • Neal Bez, Sanghyuk Lee, Shohei Nakamura. Strichartz estimates for orthonormal families of initial data and weighted oscillatory integral estimates. Forum of Mathematics, Sigma. 2021. 9
more...
MISC (1):
  • BEZ NEAL, HONG YOUNGHUN, LEE SANGHYUK, 中村 昌平, 澤野 嘉宏. 滑らかさを加味した直交ストリッカーツ評価 (関数空間の一般化とその周辺). 数理解析研究所講究録 = RIMS Kokyuroku. 2019. 2143. 173-184
Lectures and oral presentations  (20):
  • Maximal estimates for the Schrodinger equation with orthonormal initial data
    (Fourier restriction online 2021 2021)
  • Maximal estimates for the Schrödinger equation with orthonormal initial data
    (Asia-Pacific Analysis and PDE Seminar (Online) 2020)
  • フーリエ拡張作用素に対する重み付き不等式へのX-rayトモグラフィーによるアプローチ
    (調和解析中央大セミナー 2019)
  • The pointwise convergence problem for the one dimensional Schrödinger equation describing infinitely many particles
    (Analysis seminar (University of Birmingham, UK) 2019)
  • Tomography bounds for the Fourier extension operator
    (Harmonic Analysis and Non-linear Partial Differential Equations (Kyoto University) 2019)
more...
Professional career (1):
  • 博士(理学) (首都大学東京)
Awards (1):
  • 2020/09 - 日本数学会建部奨励賞
Association Membership(s) (1):
日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page