Rchr
J-GLOBAL ID:202001018467527420   Update date: Oct. 02, 2024

KAMATANI KENGO

KAMATANI KENGO
Affiliation and department:
Homepage URL  (1): https://sites.google.com/view/kengokamatani/
Research keywords  (3): マルコフ連鎖 ,  モンテカルロ法 ,  ベイズ統計学
Research theme for competitive and other funds  (11):
  • 2021 - 2027 大規模時空間従属性データ科学へ向けた先端的確率統計学の新展開
  • 2020 - 2025 Robust quasi-Hamiltonian Monte Carlo Methods
  • 2021 - 2024 Analysis for scalable Bayesian calculations
  • 2021 - 2024 スケーラブルなベイズ計算法の解析
  • 2016 - 2020 Next generation Monte Carlo methods based on reversible proposal Metropolis-Hastings algorithms
Show all
Papers (27):
  • Kengo Kamatani, Xiaolin Song. Non-reversible guided Metropolis kernel. Journal of Applied Probability. 2023
  • Joris Bierkens, Kengo Kamatani, Gareth O. Roberts. High-dimensional scaling limits of piecewise deterministic sampling algorithms. The Annals of Applied Probability. 2022. 32. 5
  • Alexandros Beskos, Kengo Kamatani. MCMC Algorithms for Posteriors on Matrix Spaces. Journal of Computational and Graphical Statistics. 2022. 1-18
  • Kengo KAMATANI, Xiaolin SONG. HAAR-WEAVE-METROPOLIS KERNEL. Bulletin of informatics and cybernetics. 2022. 54. 1. 1-31
  • 鎌谷研吾. Mean-reverting Proposals for the Markov Chain Monte Carlo Algorithms. 日本統計学会誌. 2021. 50. 2
more...
MISC (3):
  • 乙部達志, 鎌谷研吾. 鉄道の空気力学 走行速度の違いによる強風時の安全性を評価する. RRR. 2020. 77. 10
  • KAMATANI KENGO. Note on asymptotic properties of probit Gibbs sampler (Asymptotic Expansions for Various Models and Their Related Topics). 2013. 1860. 140-145
  • 鎌谷 研吾. マルコフ連鎖モンテカルロ法のエルゴード性の解析 (マクロ経済動学の非線形数理). 数理解析研究所講究録. 2011. 1768. 73-84
Books (1):
  • モンテカルロ統計計算
    講談社 2020 ISBN:9784065191835
Lectures and oral presentations  (1):
  • Scaling limit of Markov chain/process Monte Carlo methods
    (IASC-ARS2022 2022)
Committee career (2):
  • 2023/06 - 2025/05 日本統計学会 国際担当理事
  • 統計学会連合 業務委員
Awards (3):
  • 2020/09 - 日本統計学会 研究業績賞
  • 2014/09 - 日本統計学会 小川研究奨励賞
  • 2005/12 - Best Student Paper Award and Wakimoto Memorial Fund
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page